Project/Area Number |
17K06213
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Shizuoka Institute of Science and Technology |
Principal Investigator |
Toake Yasushi 静岡理工科大学, 理工学部, 教授 (60288404)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | BDF / 超音波照射 / 固体触媒 / 燃焼 / 排気ガス濃度 / BDF合成 / BDF合成 / 量産化 / 物性値測定 / 燃焼実験 / 超音波BDF合成法 / 塩基性ゼオライト / 回分式 / 生成率 / 触媒被毒 / NOx低減 |
Outline of Final Research Achievements |
The purpose of this study is to propose and verify a ultrasonic BDF synthesis method by using solid catalyst. During the study, kinds of zeolites and ion exchange resins were used to enhance their base characteristics, then vegetable oil and Jatropha curcas were employed to conduct batch and circulation ultrasonic BDF synthesis. Also, catalyst poisoning and thermal properties were investigated. Finally, dynamics and exhaust gas characteristics were measured when synthesized BDF were used as the fuel for two diesel engines. Some conclusions were obtained as follows:(1)BDF synthesis ratio reached 63% when zeolite was used;(2)Thermal properties of the synthesized BDF meets the standard of the fuel;(3)The concentration of NOx was 360ppm and smoke concentration was 1.3/FSN when B30 was used under full load condition.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、超音波のキャビテーション現象に基づき、従来の水酸化ナトリウム触媒の代わりに、水洗いを必要としなく、調製した固体触媒を用いる新しいBDF合成法を提案・検証した。BDF合成反応はエステル反応となるが、エステル反応を促進するには、温度と撹拌が必須条件とされてきた。しかし、固体触媒に超音波を照射すると、反応場にはキャビテーションが発生しやすくなり、結果的にはBDF合成率の向上とエネルギ使用率の低減につながるたため、学術的な意義があると考えられる。 この技術はさらに改善すれば、様々な植物油BDF合成への適用が可能であり、化石燃料の代わりに環境にやさしいエネルギーを量産化することが期待できる。
|