High efficiency and high heat transport rate of parallel tubes heat transport device in order to consider low environmental impact
Project/Area Number |
17K06214
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Tokyo Metropolitan College of Industrial Technology |
Principal Investigator |
SAITO Hiroshi 東京都立産業技術高等専門学校, ものづくり工学科, 准教授 (40401450)
|
Co-Investigator(Kenkyū-buntansha) |
村田 章 東京農工大学, 工学(系)研究科(研究院), 教授 (60239522)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 熱工学 / 流体工学 / 伝熱機器 / 気液二相流 / 熱輸送 / 内部流動 / 相変化 / 可視化 / 流体力学 |
Outline of Final Research Achievements |
Heat transport measurement and flow visualization of the internal fluid flow of a parallel tubes heat transport device with a heating/cooling header and several tubes were performed to evaluate the heat transport characteristics and to improve the efficiency and heat transport rate of the device. It was confirmed that the improvement of heat transport rate in the thin type parallel tube heat transfer device was enhanced by using alcohol aqueous solution and the heat transport rate was comparable to that of a standard type. When HFO refrigerant with low ozone depletion potential and low global warming potential was used instead of the conventional HFC refrigerant, there was no difference in the internal fluid flow between the two refrigerants, indicating that the decrease in heat transport was due to the physical properties related to the heat transport rate.
|
Academic Significance and Societal Importance of the Research Achievements |
電子デバイスなど冷却用の相変化型並列細管熱輸送デバイスは,作動流体の沸騰・凝縮によって流体輸送を行うため,電力を一切用いることなく熱輸送を行うことができる.本研究ではグリーン冷媒を用いた並列細管熱輸送デバイスの熱輸送量と内部流動の同時計測から,複雑に変化する気液二相流の内部流動様式と熱輸送量の関係を明らかにし,すでに実用化されている他の熱輸送デバイスに比べ,高効率かつ高熱輸送量が得られることを確認した.また今後さらなる地球温暖化対策と環境影響物質フリーへの要求が高まる中,熱輸送デバイス以外にも相変化を伴う伝熱の要素技術として資することができる.
|
Report
(4 results)
Research Products
(15 results)