Study on the magnetic flux trapping and high-quality superconducting films by controlling artificial pinning centers using molecular doping
Project/Area Number |
17K06346
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Electronic materials/Electric materials
|
Research Institution | Shizuoka University |
Principal Investigator |
Kita Ryusuke 静岡大学, 工学部, 教授 (90303528)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 高温超伝導 / 超伝導薄膜 / 臨界電流密度 / 人工ピニングセンター / 分子ドーピング / 有機金属塗布法 / 高温超伝導薄膜 / 臨界電流 / 磁束ピニング / 酸化物高温超伝導薄膜 / 臨海電流密度 / 量子磁束 / 超伝導材料・素子 / 電子・電気材料 |
Outline of Final Research Achievements |
We have investigated the fabricating process of high-temparature superconducting thin films with high-performance critical current density by controlling the size and density of artificial pinning centers using the crystallization of amorphous thin films under extremely-low oxygen pressure. The formation process of high-temparature superconducting thin films and the interaction between artificial pinning centers and magnetic quantum fluxes have been studied. As a result, the critical current density property of the high-temparature superconducting films was enhanced by the improvement on the crystal growth and surface flatness by tetrakis Zr molecule doping into the coating solution to fabricate the films. Furthermore the pinning property the high-temparature superconducting thin films in the magnetic fields ranging from low to high magnetic field was increased by simultaneous doping of Hf and La.
|
Academic Significance and Societal Importance of the Research Achievements |
本成果により、高い磁場中臨海電流密度を有する高機能酸化物高温超伝導薄膜を実現することが可能となった。これにより、大電力を超低損失で輸送できる超伝導ケーブルの実用化に大きく寄与することが可能となった。更にこの技術を基に、グローバルな超伝導ケーブルネットワークを構築することにより、低炭素社会の実現や二酸化炭素排出の無い社会の実現に貢献できることが期待される。また、次世代医療分野への応用も可能となる。
|
Report
(4 results)
Research Products
(23 results)