Large area bonding for power device by effective dispersion of pillar-shaped IMC
Project/Area Number |
17K06371
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Electron device/Electronic equipment
|
Research Institution | Gunma University |
Principal Investigator |
Shohji Ikuo 群馬大学, 大学院理工学府, 教授 (00323329)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | パワー半導体 / 鉛フリーはんだ / パワーサイクル / き裂進展 / 金属間化合物 / 亀裂進展 / 微細接続 / 電子デバイス・機器 |
Outline of Final Research Achievements |
To improve thermal fatigue resistance of the joint of the power semiconductor chip, the dispersion method of pillar-shaped intermetallic compounds (IMCs) generated in lead-free solder was investigated. For Sn-Ag-Cu-In system solder, the bonding temperature and the cooling rate from it to be required for formation of pillar-shaped IMCs were clarified. The power cycle test that simulates rapid heating and cooling cycles loaded to the power semiconductor chip was conducted and it was found that the joint with dispersed pillar-shaped IMCs has an excellent suppressing effect on fatigue crack propagation. Moreover, a Sn-Sb-Ag system alloy with small amount of Ni and Ge was developed as a new high-temperature lead-free solder to improve the thermal fatigue resistance of solder itself.
|
Academic Significance and Societal Importance of the Research Achievements |
パワー半導体チップのはんだ接合部を対象として、その耐熱疲労特性の向上を図る接合材料の研究を行った。具体的には接合材である鉛フリーはんだ中にピラー状の金属間化合物を分散生成させて、接合部中に発生するき裂の進展を抑制する構造を開発した。同時に、NiやGeを微量添加したSn-Sb-Ag系高温鉛フリーはんだを新規に開発した。開発した接合部に対し、パワー半導体で問題となる急加熱急冷サイクルを模擬したパワーサイクル試験を実施し、優れた耐熱疲労特性を有することを実証した。本研究の成果は、SiCやGaNなどの次世代パワー半導体への適用が期待される。
|
Report
(5 results)
Research Products
(20 results)