Application of vibrating fluidized bed to component separation of particulate matter and synthesis of functional particle by microwave heating
Project/Area Number |
17K06891
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Properties in chemical engineering process/Transfer operation/Unit operation
|
Research Institution | Hiroshima University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
深澤 智典 広島大学, 工学研究科, 助教 (00589187)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | マイクロ波 / 複合酸化物 / ナノ粒子 / 振動流動層 / 再資源化 / マイクロ波加熱 / 凝集 / 成分分離 / 化学工学 / 粉粒体操作 |
Outline of Final Research Achievements |
A simple method for estimating the formation process of agglomerated particles in an vibrating fluidized bed from the pressure drop in the bed was developed. Moreover, we have succeeded in separating only particles with a single crystalline phase from a mixture of particles having almost equal size and density with different crystalline phases with a certain degree of accuracy. On the other hand, the effects of microwave heating and pH adjustment on the synthesis of Co, Fe, and Mo composite oxide particles by precipitation method were studied using an experimental setup optimized by simulating the electromagnetic field intensity distribution in a cavity-type microwave heating experimental setup. It was found that the precipitates with the crystalline phase of (Co0.7Fe0.3) MoO4 could be obtained without calcination at adequate pH.
|
Academic Significance and Societal Importance of the Research Achievements |
振動流動場における凝集粒子生成を成分分離の基本原理とすること、振動流動場における不均一性の抑制をマイクロ波加熱の欠点の克服に応用し、連続式粒子合成法を構築しようとすることが検討された例はなく、完全に新規な提案である。 提案した新規プロセスは、エネルギー問題解決に資する材料の合成, 革新的新規デバイスを構築するナノ粒子材料の合成, 環境問題を解決するためのプロセスとして普く広く活用でき、各分野での低コスト化を実現できると期待できる。よって、微粒子工学分野への貢献だけでなく、化学反応を制御したナノ加工プロセスなどの新しい学問分野の開拓など他分野への学術的波及効果が期待できる。
|
Report
(4 results)
Research Products
(51 results)