Project/Area Number |
17K06903
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Reaction engineering/Process system
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Lenggoro Wuled 東京農工大学, 工学(系)研究科(研究院), 教授 (10304403)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 微粒子 / 粉末 / コロイド / エアロゾル / 噴霧 / 加熱 / 省エネルギー化 / 省資源化 / ナノ粒子 / 構造化 / 電界 / 親水性 / 燃焼 / 材料合成 / プロセス / 粉粒体操作 / 気中加熱 / 多成分系 / 結晶 / 粒子合成 / 噴霧熱分解 / 多成分系機能材料 / ナノ材料 |
Outline of Final Research Achievements |
The main approach in this study is to introduce droplets suspended in air (aerosolization) from a colloidal suspension as a raw material into a high temperature field to form an arbitrary particle structure. We analyzed the properties of the particle structures generated in the drying and heating processes, and aimed to save resources and energy (decrease in operating temperature). The behaviors of the aerosols and the property of the nanoparticle structures formed in the drying and heating process were analyzed, and the importance of the property of the raw material was clarified. In addition to the existing colloidal particles, we have also developed an original method for nanoparticle synthesis. A new energy-saving process has been realized by reducing the number of operations and temperature of the heating process.
|
Academic Significance and Societal Importance of the Research Achievements |
多成分系酸化物粒子の多くは固相反応法で製造されている。固相反応法では主に数μm以上の原料粉末を機械的に混合しながら超高温処理(1000℃以上)を施す。大きな(数10μm以上)酸化物の塊が形成される。幅広く応用がある目的の粒子径(1μm以下)を得るために、合成粉末の塊を粉砕するが、粉砕工程では材料の品質低下が生じる。 固相反応法で困難である1μm以下の微粒子の製造を対象にし、本研究では原料として懸濁液に着目した。液体を気中に浮遊させた液滴群を高温場に導入して、粒子構造体の形成を詳細に解析した。原料の性状の重要性を明らかにし、加熱操作の回数および温度の低下により、省エネ型の新規プロセスが実現された。
|