Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Outline of Final Research Achievements |
This study has developed a simulation method for combustion and multi-component flow dynamics under supercritical pressures. The method introduced the non-ideal thermodynamic and transport property models to consider peculiar behaviors that appear in supercritical pressures. All the models were fully validated in comparison with experimental or reference data. The flame propagation problems under supercritical pressures demonstrated that the non-ideal effects in the diffusion coefficient are the most influential for the prediction of laminar flame speeds. Regarding thinner flame in higher-pressure conditions, we have developed a new flame model, with which the flame propagation behavior under elevated pressure conditions was successfully captured even on coarser grids. Besides, we constructed a non-ideal fluid library, with which the non-ideal thermodynamic and transport properties are easily obtained in arbitrary simulation programs.
|