Modeling for multi-component flows and combustion dynamics under supercritical pressure environments
Project/Area Number |
17K06939
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Aerospace engineering
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 超臨界流体 / 燃焼 / 非理想性 / 数値シミュレーション / 非理想熱輸送物性 / 数値流体力学 / 火炎モデル / 非理想流体 / 超臨界圧流体 / 界面相変化 |
Outline of Final Research Achievements |
This study has developed a simulation method for combustion and multi-component flow dynamics under supercritical pressures. The method introduced the non-ideal thermodynamic and transport property models to consider peculiar behaviors that appear in supercritical pressures. All the models were fully validated in comparison with experimental or reference data. The flame propagation problems under supercritical pressures demonstrated that the non-ideal effects in the diffusion coefficient are the most influential for the prediction of laminar flame speeds. Regarding thinner flame in higher-pressure conditions, we have developed a new flame model, with which the flame propagation behavior under elevated pressure conditions was successfully captured even on coarser grids. Besides, we constructed a non-ideal fluid library, with which the non-ideal thermodynamic and transport properties are easily obtained in arbitrary simulation programs.
|
Academic Significance and Societal Importance of the Research Achievements |
現在,急速な温暖化をはじめとして地球環境問題の改善が喫緊の課題である.燃焼機器の熱効率向上を目的に,現在考慮されていないような超高圧環境下での燃焼技術が今後求められる可能性がある.本研究で開発した超臨界圧流体および燃焼シミュレーション技術は,従来のシミュレーション技術ではあまり考慮されていない流体非理想性を適切に考慮したものであり,今後の高圧燃焼流体解析技術およびそれを使用した燃焼技術の革新に資するものである.また,非理想モデルは汎用性ある形で計算ライブラリ化されており,それぞれのシミュレーションプログラムにおいて使用可能である.これにより,本研究成果の社会展開が可能である.
|
Report
(4 results)
Research Products
(27 results)