Study on in-flight ablation phenomena using ground testing
Project/Area Number |
17K06947
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Aerospace engineering
|
Research Institution | Tottori University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | アブレーション / アブレーションセンサー / 計量アブレータ / 空力加熱 / 熱防御システム / センサー / 酸水素ガストーチ / 数値シミュレーション / 小型センサー / 酸水素トーチ火炎 / 多孔質体 / センサー計測 / 航空宇宙工学 / アブレ-ション / CFD / 酸素アセチレンバーナー |
Outline of Final Research Achievements |
An experimental device using an oxy-hydrogen gas torch to simulate an unsteady aerodynamic heating environment during atmospheric entry flights was developed. This device provided a broad range of heat flux and surface temperature conditions, as in existing high-temperature plasma wind tunnels. Moreover, embedded ablation sensor measurements were possible under the time-varying heat flux environment, which is challenging to do in the existing wind tunnel. In the present study, the time history of surface temperature encountered during a space vehicle's atmospheric entry condition was experimentally simulated using the developed device. The results showed a significant difference in the ablation phenomenon between the time-varying and time-constant heating history. The ground testing procedure demonstrated the reproduction of realistic entry flight ablation behavior and the detection of unsteady ablation with embedded ablation sensor measurements.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,大気突入軌道上で起こりえる加熱環境を地上実験で再現する実験手法を開発した.これを用いて,飛行環境におけるアブレーション環境を再現し,フライト計測用アブレーションセンサーで、アブレーション過程を検知した.このようなことが可能となることは,センサーデータから飛行環境を再構築する手法の検証を行える地上実験環境が整ったことを意味し,将来宇宙ミッションで使われる宇宙機熱防御システムの信頼性を高める意義がある.
|
Report
(4 results)
Research Products
(20 results)