Project/Area Number |
17K06971
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Naval and maritime engineering
|
Research Institution | National Institute of Maritime, Port and Aviation Technology |
Principal Investigator |
Matsuo Kohei 国立研究開発法人海上・港湾・航空技術研究所, その他部局等, 研究員 (00399528)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 曲面幾何 / 曲率線 / スマートマテリアル / 曲面変形 / 船舶 |
Outline of Final Research Achievements |
A geometrical theory to control the shape of a curved surface from arbitrary shape to arbitrary shape is developed. Specifically, a theoretical system is developed to obtain a desired surface by giving three components, namely, expansion and contraction in the longitudinal direction, out-of-plane bending in the normal direction, and in-plane bending, to each point of lines of curvature. The important point is to form a curved surface without giving any torsion. A software that implements the theory is developed in this study. The order in which the deformation is applied and the incremental width of the deformation can be changed arbitrarily, and how the deformation progresses can be confirmed graphically in the system. In addition, the actual mechanical device is manufactured for demonstration purposes. By connecting the device to the software, we can confirm the actual curved surface deformation operation.
|
Academic Significance and Societal Importance of the Research Achievements |
曲線格子に、長さ方向の伸縮、曲面に対する法線方向の面外曲げ、それに直交する面内曲げを与えることによって任意の曲面形状を得るアルゴリズムを開発した。これを仮に、曲面上の曲率線格子ではない、任意の曲面上の格子で行う場合、面外曲げ、面内曲げ、伸縮の他、ねじりを与える必要があり変形が複雑になる。曲率線格子を考慮することで、成形に伸縮と2軸方向の曲げ成分だけで対応でき、機械的な実用化が容易になる。 将来的には、この理論を機械装置として船舶等に実装することで、その時々の状況に応じて最適な形状にコントロールする、Transformable Ship等の実現を目指し、船舶、鉄道等の省エネ技術に貢献する。
|