Study on hydrogen isotope behavior in fusion test device using tracer tritium by D-D reaction
Project/Area Number |
17K06998
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Nuclear fusion studies
|
Research Institution | National Institute for Fusion Science |
Principal Investigator |
Tanaka Masahiro 核融合科学研究所, ヘリカル研究部, 准教授 (00435520)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | トリチウム挙動 / 物質収支 / 化学形態 / プラズマ対向壁材 / 赤外吸収分光計測 / 排気ガス組成 / トリチウム / トリチウム化学形態 / 分光計測 / プラズマ対向壁材料 / 排気ガス組成分析 / 放電洗浄 |
Outline of Final Research Achievements |
The hydrogen isotope behavior in a large fusion test facility was evaluated for four years using tritium produced by D-D reaction as a tracer. As the results, it was found that: 1. 56% of the produced tritium remained in the vacuum vessel at the end of the fourth year of the deuterium plasma experiment; 2. the tritium release from the vacuum vessel was rate-limiting due to the isotope exchange reaction and tritium diffusion in the material; 3. the chemical form of the released tritium was molecular (Q2) >> hydrocarbon (CxQy) > water vapor (Q2O); 4. The exhaust gas composition was analyzed by infrared absorption spectroscopy, and deuterated hydrocarbons (CxHyDz), carbon monoxide, and ammonia were observed. The present study clarified the tritium balance in the fusion system and the complex behavior of the exhaust gas.
|
Academic Significance and Societal Importance of the Research Achievements |
大型核融合試験装置の重水素実験で生成される極僅かのトリチウムをトレーサー(追跡子)として利用することで、核融合装置内外の水素同位体挙動を明らかにすることができました。さらに、核融合装置内から排出されるトリチウムは、さまざまな化学形態として存在すること、水素同位体交換反応と材料内での拡散速度に律速されていることを明らかにしました。この研究成果は、将来の核融合炉で燃料として使用されるトリチウムの安全取り扱いや、燃料を処理し再利用する循環システムに関する重要な知見となります。
|
Report
(5 results)
Research Products
(24 results)