• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Generic prediction of natural product biosynthetic pathways from large-scale measurement data

Research Project

Project/Area Number 17K07260
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field System genome science
Research InstitutionThe University of Tokyo (2018-2019)
Tokyo Institute of Technology (2017)

Principal Investigator

Kotera Masaaki  東京大学, 大学院工学系研究科(工学部), 准教授 (90643669)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords代謝化合物 / 生合成経路 / 合成生物学 / 化学構造 / 逆合成 / 出発物質 / 中間体 / 誘導体 / KEGG / 複雑骨格機能分子 / 二次代謝 / 天然物 / 複雑骨格分子 / 生合成単位 / 予測 / NetworkX / 化合物 / Fingerprint / 遺伝的アルゴリズム / 生合成 / 代謝経路 / 大規模データ
Outline of Final Research Achievements

In this study, we developed a predictive workflow named the Metabolic Disassembler that automatically disassembles the target molecule structure into relevant biosynthetic units (BUs), which are the substructures that correspond to the starting materials in the biosynthesis pathway. This workflow uses a biosynthetic unit library (BUL), which contains starting materials, key intermediates, and their derivatives. We obtained the starting materials from the KEGG PATHWAY database, and 765 BUs were registered in the BUL. We then examined the proposed workflow to optimize the combination of the BUs. To evaluate the performance of the proposed Metabolic Disassembler workflow, we used 943 molecules that are included in the secondary metabolism maps of KEGG PATHWAY. About 95.8% of them (903 molecules) were correctly disassembled by our proposed workflow. In addition, for 90.7% of molecules, our workflow finished the calculation within one minute.

Academic Significance and Societal Importance of the Research Achievements

本ワークフローは、正しさと計算時間の両面で天然物の効率的な分解を可能にしました。また、ユーザーが計算結果を理解しやすいように、BNに対応する部分構造を自動的に色分けして出力します。利用者は、出発分子を事前に指定する必要がなく、データベースにない分子であっても、任意のターゲット分子を入力することができます。このワークフローは、天然物の生合成の理解や予測に大いに役立つと考えています。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (7 results)

  • [Journal Article] Metabolic disassembler for understanding and predicting the biosynthetic units of natural products2019

    • Author(s)
      Amano Kohei、Matsumoto Tsubasa、Tanaka Kenichi、Funatsu Kimito、Kotera Masaaki
    • Journal Title

      BMC Bioinformatics

      Volume: 20 Issue: 1 Pages: 728-728

    • DOI

      10.1186/s12859-019-3183-9

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] De novo design of anticancer peptides by ensemble artificial neural networks2019

    • Author(s)
      Grisoni Francesca、Neuhaus Claudia S.、Hishinuma Miyabi、Gabernet Gisela、Hiss Jan A.、Kotera Masaaki、Schneider Gisbert
    • Journal Title

      Journal of Molecular Modeling

      Volume: 25 Issue: 5 Pages: 112-112

    • DOI

      10.1007/s00894-019-4007-6

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Developing Novel Descriptors to Predict Physical Properties of Inorganic Compounds from Compositional Formula2018

    • Author(s)
      Sakata Fusako、Kotera Masaaki、Tanaka Kenichi、Nakano Hiroshi、Ukita Masakazu、Shirasawa Raku、Tomiya Shigetaka、Funatsu Kimito
    • Journal Title

      Journal of Computer Aided Chemistry

      Volume: 19 Issue: 0 Pages: 7-18

    • DOI

      10.2751/jcac.19.7

    • NAID

      130007492788

    • ISSN
      1345-8647
    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 機械学習を利用した.CYP 代謝部位検出法の開発2018

    • Author(s)
      海東 和麻、小寺 正明、船津 公人
    • Organizer
      第62回日本薬学会関東支部大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 構造推定の精度向上を目指した化合物データセットの選択2018

    • Author(s)
      山本博之、小寺正明
    • Organizer
      第27回 環境化学討論会
    • Related Report
      2018 Research-status Report
  • [Presentation] Designing Angi-Cancer Peptides by Counterpropagation Artificial Neural Network2018

    • Author(s)
      Miyabi Hishinuma, Francesca Grisoni, Slaudia S. Neuhaus, Gisela Gabernet Garrida, Jan A. Hiss, Masaaki Kotera, Gisbert Schneider
    • Organizer
      CBI学会2018年大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Prediction of biosynthetic building blocks in complicated natural products2018

    • Author(s)
      Kohei Amano, Tsubasa Matsumoto, Miyabi Hishinuma, Kimito Funatsu, Masaaki Kotera
    • Organizer
      CBI学会2018年大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Pathway prediction of natural products by reverse synthetic analysis2018

    • Author(s)
      Tsubasa Matsumoto, Kohei Amano, Miyabi Hishinuma, Kimito Funatsu, Masaaki Kotera
    • Organizer
      CBI学会2018年大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Prediction of Biosynthetic Basic Parts of Compounds with Complicated Structures2017

    • Author(s)
      Kohei Amano, Tsubasa Matsumoto, Miyabi Hishinuma, Masaaki Kotera
    • Organizer
      Chem-Bio Informatics Society Annual Meeting 2017
    • Related Report
      2017 Research-status Report
  • [Presentation] Prediction of natural biosynthetic pathway by reverse synthetic analysis2017

    • Author(s)
      Tsubasa Matsumoto, Kohei Amano, Miyabi Hishinuma, Masaaki Kotera
    • Organizer
      Chem-Bio Informatics Society Annual Meeting 2017
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi