Project/Area Number |
17K07447
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Plant molecular biology/Plant physiology
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
Shoji Tsubasa 奈良先端科学技術大学院大学, 先端科学技術研究科, 准教授 (40343272)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 転写因子 / ジャスモン酸 / 二次代謝 / ERF転写因子 / 塩ストレス / グルコアルカロイド / トマト / アルカロイド / 天然物 |
Outline of Final Research Achievements |
The toxic alkaloid nicotine is produced in the roots of Nicotiana species and primarily accumulates in leaves as a specialized metabolite. A series of metabolic and transport genes involved in the nicotine pathway are coordinately upregulated by a pair of jasmonate-responsive AP2/ERF-family transcription factors, NtERF189 and NtERF199, in the roots of tobacco. We explore the potential of manipulating the expression of these transcriptional regulators to alter nicotine biosynthesis in tobacco. Transient overexpression of NtERF189 led to alkaloid production in the leaves of N. benthamiana and N. alata. Constitutive and leaf-specific overexpression of NtERF189 increased the accumulation of foliar alkaloids in transgenic tobacco plants but negatively affected plant growth. By contrast, in a knockout mutant of NtERF189 and NtERF199 obtained through CRISPR/Cas9-based genome editing, alkaloid levels were drastically reduced without causing major growth defects.
|
Academic Significance and Societal Importance of the Research Achievements |
従来、数多くの酵素反応から構成される複雑な天然物の生産性を植物体で向上させる方策として、少数の酵素反応ステップを増強することで代謝改変が試みられてきた。しかし、多くの場合1つの反応ステップが増強されてもまた別の段階が律速となり、最終代謝産物の生産性を大幅に増大することは困難であった。マスター制御遺伝子を用いて、天然物代謝系全体の活性を包括的に増大させることにより、従来の代謝工学ではなし得なかった高レベルな生産性の増強が可能になる。
|