Interaction and synchrony of population dynacmis determine the parameters of Taylor's laws
Project/Area Number |
17K07552
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Ecology/Environment
|
Research Institution | Hokkaido University |
Principal Investigator |
TAKASHI Saitoh 北海道大学, 北方生物圏フィールド科学センター, 教授 (00183814)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | テイラー則 / 個体群 / 個体群動態 / 自己回帰モデル / エゾヤチネズミ / 自己相関モデル / 生態学 / 生物圏現象 |
Outline of Final Research Achievements |
Taylor's law (TL) is an empirical rule in ecology for variance and mean of population density: log10(variance) ~ log10(a) + b × log10(mean). Population synchrony is another common feature. This study investigated the effects of environmental synchrony and density-dependent dispersal on the temporal (bT) and spatial (bS) slopes of TL, using an empirical dataset of 85 vole populations and simulated time-series. The empirical populations satisfied the temporal and spatial TLs with bT = 1.943 and bS = 1.579. The mean pairwise synchrony was 0.377. Most simulated populations satisfied the form of the TLs without the environmental synchrony and density-dependent dispersal, but those slopes were too steep. When including both effects, 92.7% of the simulated datasets provided realistic bT, bS, and population synchrony. Because the two slopes were more sensitive to density-dependent dispersal than environmental synchrony, density-dependent dispersal may be the key to understand bT and bS.
|
Academic Significance and Societal Importance of the Research Achievements |
テイラー則は生態学において提起された密度の分散と平均に関する経験則で,数百に及ぶ動植物種で観察されてきた.密度は生物ばかりでなく,物質一般に観察されることから,工学,疫学,分子生物学においても適用されている.また,このように幅広い対象でテイラー則が成立することから分散と平均には未知の数学的な関係があるのではないか,と考える数学者もいる.しかし,その形成メカニズムは不明で,それぞれの分野で研究が進められている.本研究は,時間遅れのない個体の再配置の重要性を明らかにしており,その成果は,ばらつき(分散)を抑える必要があるさまざまなシステムの制御にも応用できる.
|
Report
(4 results)
Research Products
(13 results)