Project/Area Number |
17K07713
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Applied microbiology
|
Research Institution | The University of Tokyo |
Principal Investigator |
Kobayashi Hajime 東京大学, 大学院工学系研究科(工学部), 准教授 (50549269)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 微生物電気化学的システム / 電気化学的メタン生成 / メタン菌 / バイオ電極 / 二酸化炭素 / バイオカソード / トランスクリプトーム解析 / FISH / リアルタイムPCR / 微生物利用学 / メタン |
Outline of Final Research Achievements |
Electromethanogenesis is bioelectrochemical synthesis of methane from CO2 by biocathodes. In an electromethanogenic system using thermophilic microorganisms, quantitative real-time polymerase chain reaction and fluorescence in situ hybridization revealed that the biocathode microbiota was dominated by the methanogen Methanothermobacter sp. strain EMTCatA1 and the actinobacterium Coriobacteriaceae sp. strain EMTCatB1. RNA sequencing was used to compare the transcriptome profiles of each species at the biocathodes. For the methanogen, genes related to hydrogenotrophic methanogenesis were highly expressed. For the actinobacterium, the expression profiles of genes encoding multiheme c-type cytochromes and membrane-bound oxidoreductases suggested that the actinobacterium directly takes up electrons from the electrode. Hence, we propose that a syntrophy-like interaction exists between these two species, which serves to catalyze electromethanogenesis at the biocathode.
|
Academic Significance and Societal Importance of the Research Achievements |
電気化学的メタン生成は,電流を利用し,温暖化ガスである二酸化炭素を燃料であるメタンに変換する反応で,再生可能エネルギー電力の有効利用や排水処理,バイオガス改質における活用が期待されている.本研究では、電気化学的メタン生成を触媒するバイオカソードの触媒機構の解明につながる新規の知見を得た.これら知見は今後のバイオカソードの性能の向上やリアクター設計,反応最適化のための研究に有用であり,今後のスケールアップや技術実証に向けた基盤となるものである.
|