• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Building an early prediction method of US crop yields based on machine learning algorithm

Research Project

Project/Area Number 17K08037
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Agricultural environmental engineering/Agricultural information engineering
Research InstitutionNational Agriculture and Food Research Organization

Principal Investigator

Sakamoto Toshihiro  国立研究開発法人農業・食品産業技術総合研究機構, 農業環境変動研究センター, 上級研究員 (20354053)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords機械学習 / 食料安全保障 / トウモロコシ / 大豆 / 小麦 / フェノロジー / 作柄予測 / 作付分類 / 単収予測 / 高頻度観測衛星 / リモートセンシング / 作物収量予測 / 収量予測 / コーンベルト / Deep Learning / Deep Leaerning
Outline of Final Research Achievements

This study aimed to establish early crop yield prediction technology for U.S. crops. Firstly, the versatility of crop phenology detection method was improved to be applicable to 36 growth stages of 8 crops. Secondly, the early crop yield prediction method was improved by considering weather and environmental conditions. Then, the prediction accuracy of corn and soybean yield was improved. Finally, the early crop classification method was modified to enable estimation of crop coverage ratio within a MODIS pixel. Then, the crop classification accuracy was improved. Consequently, a new crop yield prediction method was developed in terms of using machine learning algorithm based on the combined use of high-frequency observation satellite data (MODIS) and meteorological environmental data.

Academic Significance and Societal Importance of the Research Achievements

日本は、輸入トウモロコシ・大豆の約7割、輸入小麦の約5割を米国からの輸入に依存している。また、世界的な食料需給情勢の不安定化を背景に、国際的な政策協調として、世界の農業・食料市場に関する正確かつ透明な情報を取得するための衛星リモートセンシング技術を用いた監視ネットワークの構築が推進されている。本研究成果は、作柄早期予測を確立するための基盤的な知見を提供するとともに、国内外の食料安全保障に資する技術としても活用が期待される。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2021 2020 2019 2018 2017 Other

All Journal Article (4 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Invited: 1 results) Remarks (1 results)

  • [Journal Article] Early classification method for U.S. corn and soybean by incorporating MODISestimated phenological data and historical classification maps in random forest regression algorithm2021

    • Author(s)
      Toshihiro Sakamoto
    • Journal Title

      Photogrammetric Engineering & Remote Sensing

      Volume: -

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 衛星リモートセンシングデータによる作物生育広域モニタリング2021

    • Author(s)
      坂本利弘
    • Journal Title

      日本リモートセンシング学会誌

      Volume: -

    • NAID

      130008077706

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm2020

    • Author(s)
      Sakamoto Toshihiro
    • Journal Title

      ISPRS Journal of Photogrammetry and Remote Sensing

      Volume: 160 Pages: 208-228

    • DOI

      10.1016/j.isprsjprs.2019.12.012

    • Related Report
      2019 Research-status Report
  • [Journal Article] Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops2018

    • Author(s)
      Sakamoto Toshihiro
    • Journal Title

      ISPRS Journal of Photogrammetry and Remote Sensing

      Volume: 138 Pages: 176-192

    • DOI

      10.1016/j.isprsjprs.2018.02.011

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 変わりゆく世界の農業環境を見える化:地球観測衛星から考える食料安全保障2020

    • Author(s)
      坂本利弘
    • Organizer
      ナイスステップな研究者2019講演会 「近未来への招待状~ナイスステップな研究者2019からのメッセージ~」
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 機械学習による作物単収予測モデルの高精度化2019

    • Author(s)
      坂本利弘
    • Organizer
      日本写真測量学会 令和元度秋季学術講演会
    • Related Report
      2019 Research-status Report
  • [Presentation] Shape Model Fitting法による米国産作物のフェノロジー推定2017

    • Author(s)
      坂本利弘
    • Organizer
      日本リモートセンシング学会 第63回(平成29年度秋季)学術講演会
    • Related Report
      2017 Research-status Report
  • [Remarks] GAEN-View 世界の農業環境閲覧システム

    • URL

      https://gaenview.rad.naro.go.jp/

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi