• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of prediction model of lung adenocarcinoma by machine learning

Research Project

Project/Area Number 17K08740
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Human pathology
Research InstitutionKyoto University

Principal Investigator

Yoshizawa Akihiko  京都大学, 医学研究科, 准教授 (80378645)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords肺癌 / 腺癌 / 予後予測 / 機会学習 / 深層学習 / 機械学習 / 肺腺癌 / 病理組織像 / ウェーブレット変換 / 畳み込みニューラルネットワーク / デジタル画像解析
Outline of Final Research Achievements

As the first step of the study, we performed digital pathological image analysis by multi-resolution analysis and improved kNN method. After extracting labeled patch images (128x128 pixels) from the annotated region of interest as training data, they were wavelet transformed and digitized by cluster analysis (11 variables). Next, multi-resolution analysis was performed using a support vector machine. As a result, it was possible to distinguish between tumor and non-tumor with an accuracy rate of 0.7777. To improve the result, we developed a novel deep learning method (Soft switch FCN method) and conducted a study using the system. With the proposed method, the accuracy rate for the determination between tumor and non-tumor was 0.95. On the other hand, the accuracy rate for each class was not satisfactory results. We are keeping to examine the proposed algorithm with the total dataset to construct Ca-CHS that can predict the prognosis of the patients with resected lung adenocarcinoma.

Academic Significance and Societal Importance of the Research Achievements

病理デジタル画像においても深層学習を用いた判別の可能性が示せた。しかしながら,教師データであるWSI画像は放射線画像と比較し大きく,そのまま,入力することはできない。そのため,パッチ画像として入力することになるが,組織構築の判別を行う際はより広い視野をパッチとしなければならないためその画質は落とさざるを得ないジレンマがある。そこで我々はU-Netに,最適な視野領域の組み合わせを予測できるSoft switch法を組み合わせたSoft switch FCN法を共同開発し,検討に用いた。肺癌の予後予測に関しては検討途中であるが,組織構造の分類には有用である可能性が示され,その意義は大きいと考える。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (3 results) (of which Invited: 1 results)

  • [Journal Article] Adaptive Weighting Multi-Field-of-View CNN for Semantic Segmentation in Pathology2019

    • Author(s)
      H. Tokunaga, Y. Teramoto, A. Yoshizawa, R. Bise
    • Journal Title

      IEEE CVPR, 2019. (Top Conference in Computer Vision, Poster, acceptance rate:25%)

      Volume: NA Pages: 1-10

    • DOI

      10.1109/cvpr.2019.01288

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 人工知能(AI)を用いた病理診断2019

    • Author(s)
      吉澤明彦
    • Journal Title

      京都府立医科大学雑誌

      Volume: 128 Pages: 561-569

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] Deep learningを用いた肺腺癌PD-L1免疫染色標本の自動解析手法の開発2019

    • Author(s)
      吉澤明彦, 寺本 祐記
    • Organizer
      第108回日本病理学会総会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 近未来の病理診断 人工知能と肺癌病理診断2019

    • Author(s)
      吉澤明彦
    • Organizer
      第52回日本肺癌学会総会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Wavelet変換及びsupport vector machineを用いた肺腺癌の組織パターン解析(Lung adenocarcinoma classification: a computerized approach using wavelet support vector machine)2018

    • Author(s)
      寺本 祐記, 吉澤 明彦, 石橋 雄一, 羽賀 博典
    • Organizer
      第107回日本病理学会総会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi