• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Investigation of multimodality diagnosis assistant system for breast cancer

Research Project

Project/Area Number 17K09061
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Medical Physics and Radiological Technology
Research InstitutionShiga University (2019)
Gifu University (2017-2018)

Principal Investigator

Muramatsu Chisako  滋賀大学, データサイエンス学部, 准教授 (80509422)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsbreast cancer / computer aided diagnosis / image retrieval / multimodality imaging / mammography / breast ultrasound / 乳癌 / マンモグラフィ / 乳腺超音波 / 類似画像検索 / 画像診断支援 / 深層学習 / 乳腺腫瘤 / コンピュータ支援診断 / ディープラーニング / 全厨房超音波スキャナ / モデリング / 類似画像 / 鑑別診断 / 乳がん / 超音波 / 全乳房スキャン
Outline of Final Research Achievements

The purpose of this study was to develop a computerized system for assisting multimodality image diagnosis by collating image findings and abnormality locations on multimodality exams and retrieving reference images using multimodality information. For matching the locations of abnormalities, automatic detection of breast masses on automatic breast ultrasound volume scanner (ABVS) was investigated. Using deep leaning technique, relatively high detection rate was obtained, although improvement is needed for finding corresponding locations on a 3D model. For assisting differential diagnosis, reference image retrieval system was developed for mammograms and breast ultrasound images. High precision was obtained using multimodality information compared with those using single modality information, indicating the potential usefulness of the proposed study.

Academic Significance and Societal Importance of the Research Achievements

乳がんによる死亡率低下には早期発見が最も重要である.乳がんの診断には,マンモグラフィや超音波検査など複数の画像モダリティが使用される.また,乳房を自動的にスキャンする超音波自動ボリュームスキャナ(ABVS)の有用性も認識されている.しかし読影データの増加により医師の負担も増加している.本研究ではマルチモダリティ診断が効率的かつ正確に行われるように,画像診断支援システムの開発を試みた.本研究成果で得られたABVSにおける病変の自動検出システムは今後マンモグラフィとの照合システムの開発に役立てられる.また,マルチモダリティ情報を用いた参照画像検索システムは,鑑別診断に有用であることが示唆された.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (17 results)

All 2020 2019 2018 2017

All Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results) Presentation (10 results) (of which Int'l Joint Research: 6 results)

  • [Journal Article] Improving breast mass classification by shared data with domain transformation using a generative adversarial network2020

    • Author(s)
      Muramatsu Chisako、Nishio Mizuho、Goto Takuma、Oiwa Mikinao、Morita Takako、Yakami Masahiro、Kubo Takeshi、Togashi Kaori、Fujita Hiroshi
    • Journal Title

      Computers in Biology and Medicine

      Volume: 119 Pages: 103698-103698

    • DOI

      10.1016/j.compbiomed.2020.103698

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Breast mass image retrieval based on multimodality similarity estimation2020

    • Author(s)
      Muramatsu C, Oiwa M, Kawasaki T, Fujita H
    • Journal Title

      Proceedings of SPIE, IWBI2020

      Volume: 11513 Pages: 1151326-1151326

    • DOI

      10.1117/12.2564048

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Image retrieval of breast masses on ultrasound images2019

    • Author(s)
      Muramatsu C, Higuchi S, Morita T, Oiwa M, Kawasaki T, Fujita H
    • Journal Title

      Proc SPIE Medical Imaging

      Volume: 10955 Pages: 43-43

    • DOI

      10.1117/12.2513663

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Retrieval of reference images of breast masses on mammograms by similarity space modeling2018

    • Author(s)
      Muramatsu C, Higuchi S, Morita T, Oiwa M, Kawasaki T, Fujita H
    • Journal Title

      Proc SPIE, International Workshop on Breast Imaging

      Volume: 10718 Pages: 81-81

    • DOI

      10.1117/12.2318717

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Overview of subjective similarity of images for content-based medical image retrieval2018

    • Author(s)
      Muramatsu C
    • Journal Title

      Radiological Physics and Technology

      Volume: 11 Issue: 2 Pages: 109-124

    • DOI

      10.1007/s12194-018-0461-6

    • Related Report
      2018 Research-status Report
  • [Journal Article] Similarity estimation for reference image retrieval in mammograms using convolutional neural network2018

    • Author(s)
      Chisako Muramatsu, Shunichi Higuchi, Takako Morita, Mikinao Oiwa, Hiroshi Fujita
    • Journal Title

      Proceedings of SPIE Medical Imaging

      Volume: 10575 Pages: 101-101

    • DOI

      10.1117/12.2293979

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 乳房超音波画像診断支援のための画像解析技術の現状と将来2017

    • Author(s)
      村松千左子,藤田広志
    • Journal Title

      超音波TECHNO

      Volume: 29 Pages: 4-9

    • Related Report
      2017 Research-status Report
  • [Presentation] Multimodality breast mass classification using CNN-based similarity estimation2020

    • Author(s)
      Muramatsu C, Oiwa M, Kawasaki T, Morita T, Fujita H
    • Organizer
      International Workshop on Advance Image Technology
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Image retrieval of breast masses on ultrasound images2019

    • Author(s)
      Muramatsu C, Higuchi S, Morita T, Oiwa M, Kawasaki T, Fujita H
    • Organizer
      SPIE Medical Imaging
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習を利用したマンモグラムと乳腺超音波画像の腫瘤陰影の類似画像検索の検討2019

    • Author(s)
      樋口峻一,村松千左子,大岩幹直,森田孝子,藤田広志
    • Organizer
      医用画像情報学会
    • Related Report
      2018 Research-status Report
  • [Presentation] Retrieval of reference images of breast masses on mammograms by similarity space modeling2018

    • Author(s)
      Muramatsu C, Higuchi S, Morita T, Oiwa M, Kawasaki T, Fujita H
    • Organizer
      International Workshop on Breast Imaging
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Improving computer aided classification of breast lesions on mammograms using simulated masses by generative adversarial networks2018

    • Author(s)
      Muramatsu C, Morita T, Oiwa M, Fujita H
    • Organizer
      Radiological Society of North America
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Similarity estimation for reference image retrieval in mammograms using convolutional neural network2018

    • Author(s)
      Chisako Muramatsu, Shunichi Higuchi, Takako Morita, Mikinao Oiwa, Hiroshi Fujita
    • Organizer
      SPIE Medical Imaging
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Mass detection on automated breast ultrasound volume scans using convolutional neural network2018

    • Author(s)
      Chisako Muramatsu, Yuya Hiramatsu, Hironobu Kobayashi, Hiroshi Fujita
    • Organizer
      International Workshop on Advanced Image Technology
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習を利用した全乳房超音波画像における腫瘤検出手法の検討2017

    • Author(s)
      平松祐哉,村松千左子,小林宏暢,原武史,藤田広志
    • Organizer
      日本医用画像工学会
    • Related Report
      2017 Research-status Report
  • [Presentation] Deep Learningによる腫瘤の類似画像決定法の検討2017

    • Author(s)
      樋口峻市,村松千左子,原武史,藤田広志
    • Organizer
      日本医用画像工学会
    • Related Report
      2017 Research-status Report
  • [Presentation] 深層学習を利用した全乳房超音波画像における腫瘤検出手法の検討2017

    • Author(s)
      平松祐哉,村松千左子,小林宏暢,原武史,藤田広志
    • Organizer
      日本生体医工学会東海支部大会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi