• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A new estimation method for predictable cluster structure and its application to clinical medicine

Research Project

Project/Area Number 17K12648
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Statistical science
Research InstitutionOkayama University

Principal Investigator

Yamamoto Michio  岡山大学, 環境生命科学学域, 准教授 (50721396)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsクラスタリング / 次元縮小 / 判別分析 / 部分最小二乗回帰 / 統計科学 / 符号化 / 多変量解析
Outline of Final Research Achievements

Due to the recent advances in data collection and storage, data sets for statistical analysis have become complex and enormous. In the analysis of repeated measures data, for example, the data are often considered as a certain function, and such an analysis is called functional data analysis. In this study, I developed a new clustering method that conducted clustering and dimension reduction of multivariate functional objects simultaneously. Related to the method, I developed another clustering method with dimension reduction for multivariate binary data. In addition, I developed a new clustering method that identified a cluster structure of outcome variables and predicted cluster memberships of future individuals based on explanatory variables.

Academic Significance and Societal Importance of the Research Achievements

臨床医学における典型的な研究として、まず(1)クラスター分析などの教師なし学習により、疾患の重症度などを用いて症例のクラスタリングを行い、次に(2)得られたクラスターをラベルとして判別分析などの教師あり学習を用い、バイオマーカーによるサブタイプの予測や予測に重要なバイオマーカーの特定を行うものがある。このようなアプローチでは、段階ごとに異なる目的関数の最適化を行うため、真のクラスター構造と、それを予測可能な説明変数群の特定に失敗してしまう。本研究では、この問題を解決するために、教師なし学習と教師あり学習の両方の目的を同時に達成するための新たな統計解析の枠組みを提案することとなる。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (25 results)

All 2023 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (2 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (18 results) (of which Int'l Joint Research: 9 results,  Invited: 10 results)

  • [Int'l Joint Research] McGill University(カナダ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] McGill University(Canada)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Exchangeability of Measures of Association Before and After Exposure Status Is Flipped: Its Relationship With Confounding in the Counterfactual Model2023

    • Author(s)
      Suzuki Etsuji、Yamamoto Michio、Yamamoto Eiji
    • Journal Title

      Journal of Epidemiology

      Volume: 33 Issue: 8 Pages: 385-389

    • DOI

      10.2188/jea.JE20210352

    • NAID

      130008143828

    • ISSN
      0917-5040, 1349-9092
    • Year and Date
      2023-08-05
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Clinical Utility of Germline Genetic Testing in Japanese Men Undergoing Prostate Biopsy2022

    • Author(s)
      Akamatsu Shusuke, Terada Naoki, Takata Ryo、...、Yamamoto Michio、...、Ogawa Osamu
    • Journal Title

      JNCI Cancer Spectrum

      Volume: 6 Issue: 1

    • DOI

      10.1093/jncics/pkac001

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A general explanation of the counterfactual definition of confounding2022

    • Author(s)
      Suzuki Etsuji、Yamamoto Michio、Yamamoto Eiji
    • Journal Title

      Journal of Clinical Epidemiology

      Volume: - Pages: 189-192

    • DOI

      10.1016/j.jclinepi.2022.02.002

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Causal Discovery with Multi-Domain LiNGAM for Latent Factors2021

    • Author(s)
      Zeng Yan、Shimizu Shohei、Cai Ruichu、Xie Feng、Yamamoto Michio、Hao Zhifeng
    • Journal Title

      Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence

      Volume: - Pages: 2097-2103

    • DOI

      10.24963/ijcai.2021/289

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Dimension-Reduced Clustering of Functional Data via Subspace Separation2017

    • Author(s)
      Michio Yamamoto、Heungsun Hwang
    • Journal Title

      Journal of Classification

      Volume: 34 Issue: 2 Pages: 294-326

    • DOI

      10.1007/s00357-017-9232-z

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Estimation of the causal effects of stochastic interventions based on sufficient dimension reduction2022

    • Author(s)
      Yamamoto, M.
    • Organizer
      The 11th Conference of the IASC-ARS
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Fast Approximation for large-scale clustering2022

    • Author(s)
      Terada, Y., Yamamoto, M.
    • Organizer
      The 11th Conference of the IASC-ARS
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Causal discovery with multi-domain LiNGAM for latent factors2021

    • Author(s)
      Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., Hao, Z.
    • Organizer
      Causal Analysis Workshop Series 2021 (CAWS2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 2次の重み付き一般化推定方程式を用いたデータ融合手法の提案2021

    • Author(s)
      岸本和久,山本倫生
    • Organizer
      日本行動計量学会 第49回大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] スパースな経時測定データにおけるクラスタ構造の推定2021

    • Author(s)
      山本倫生,寺田吉壱
    • Organizer
      日本行動計量学会 第49回大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] K-means clustering for sparsely sampled longitudinal data2020

    • Author(s)
      Yamamoto, M., Terada, Y.
    • Organizer
      13th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] スパース経時測定データに対する関数クラスタリング2020

    • Author(s)
      山本倫生,寺田吉壱
    • Organizer
      第25回 情報・統計科学シンポジウム
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] スパースな経時測定データに対するK-means法2020

    • Author(s)
      山本倫生,寺田吉壱
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Functional canonical correlation analysis for multivariate stochastic processes2019

    • Author(s)
      amamoto, M., Terada, Y.
    • Organizer
      The 3rd International Conference on Econometrics and Statistics (EcoSta 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] クラスタリング法のcheat sheet2019

    • Author(s)
      山本倫生,寺田吉壱,谷岡健資
    • Organizer
      日本行動計量学会第47回大会
    • Related Report
      2019 Research-status Report
  • [Presentation] 多変量関数データに対する正準相関分析の定式化と解の存在性について2019

    • Author(s)
      山本倫生,寺田吉壱
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 多変量カテゴリカルデータに対するクラスター構造の推定とその可視化について2018

    • Author(s)
      山本倫生
    • Organizer
      「複雑多変量データの解析法に関する研究」研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] A component-based approach for the clustering of multivariate categorical data2018

    • Author(s)
      Yamamoto, M.
    • Organizer
      The 2nd International Conference on Econometrics and Statistics (EcoSta 2018)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Clustering of multivariate categorical data with dimension reduction via nonconvex penalized likelihood maximization2017

    • Author(s)
      Michio Yamamoto
    • Organizer
      The 2017 conference of the International Federation of Classification Societies (IFCS 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 関数データのクラスタリングとクラスター構造の可視化について2017

    • Author(s)
      山本倫生
    • Organizer
      統計学・機械学習若手シンポジウム「大規模複雑データに対する統計・機械学習のアプローチ」
    • Related Report
      2017 Research-status Report
  • [Presentation] 多変量カテゴリカルデータに内在する低次元クラスター構造の推定2017

    • Author(s)
      山本倫生
    • Organizer
      行動計量学岡山地域部会第64回研究会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Clustering of multivariate categorical data via penalized latent class analysis with dimension reduction2017

    • Author(s)
      Michio Yamamoto
    • Organizer
      2017 Hangzhou International Statistical Symposium
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Model-based clustering for multivariate categorical data with dimension reduction2017

    • Author(s)
      Michio Yamamoto
    • Organizer
      The 10th Conference of the IASC-ARS
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi