• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Swarm Learning for Deep Neural Networks

Research Project

Project/Area Number 17K12734
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionTokyo Institute of Technology

Principal Investigator

Tamura Yasumasa  東京工業大学, 情報理工学院, 助教 (50773701)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords半教師あり学習 / 群知能 / 深層学習 / 機械学習 / 合意形成 / 自己学習 / 分散学習
Outline of Final Research Achievements

Deep learning usually requires a huge amount of training data to compute a precise model. Preparing training data is costly, and hence it is a drawback of the deep leaning. This study aims at reducing the amount of training data while keeping the preciseness of the computed model. To achieve this objective, this project proposes a new semi-supervised learning method inspired by the studies in the field of swarm intelligence. The effectiveness of the proposed method is evaluated for various tasks, and the training mechanisms behind the proposed method are experimentally analysed.
On the one hand, the project concluded that the proposed model is competitive to other methods proposed in related work in terms of preciseness, provided that it is effective for some specific tasks and when the computation cost does not matter. On the other hand, the project also figured out the advantage of the proposed method; it can reduce the cost to design an optimal network structure beforehand.

Academic Significance and Societal Importance of the Research Achievements

深層学習はいまやAI研究の根幹をなす技術であり,自動運転車における周辺環境の知覚タスクや,カメラ映像などを入力とした自動監視システムなど,さまざまな実応用がなされている.今後さまざまな新たなサービスやシステムへの適用も期待される技術である一方,特に新規参入分野では訓練データの収集や最適なネットワーク構造の設計などに多大なコストを要求される.本研究は,こうしたコストを削減することが期待できる.提案手法は,訓練データ数の削減については競合手法と同程度の性能を保ちつつ,複数の有望なネットワーク構造の並列学習によって,利用者に最終的に使用するモデルについて複数の選択肢を与えることが可能である.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2022 2020 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Journal Article] Collective Decision Making on Swarm Robotics and Failure Robots2020

    • Author(s)
      田村 康将
    • Journal Title

      Journal of The Society of Instrument and Control Engineers

      Volume: 59 Issue: 2 Pages: 119-124

    • DOI

      10.11499/sicejl.59.119

    • NAID

      130007799578

    • ISSN
      0453-4662, 1883-8170
    • Year and Date
      2020-02-10
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Crossover using Backpropagation for Evolutionary Artificial Neural Networks2022

    • Author(s)
      Yasumasa Tamura
    • Organizer
      ROBOMECH 2022
    • Related Report
      2021 Annual Research Report
  • [Presentation] Eventual consensus on bio-inspired collective systems2019

    • Author(s)
      Yasumasa Tamura
    • Organizer
      Workshop on Distributed Algorithms for Low-Functional Robots
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Physical Test Platforms for Multi Robots Systems2018

    • Author(s)
      Yasumasa Tamura
    • Organizer
      The 3rd Japan-Taiwan Workshop on Secure and Dependable IoT Systems
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ビザンチン故障に対する集団意思決定戦略の障害許容性2018

    • Author(s)
      田村康将
    • Organizer
      計測自動制御学会ライフエンジニアリング部門シンポジウム2018
    • Related Report
      2018 Research-status Report
  • [Presentation] マルチエージェントシステムにおけるマルコフ性を満たす深層強化学習2018

    • Author(s)
      田中智,田村康将,Defago Xavier
    • Organizer
      第18回複雑系マイクロシンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] Collective Learning with Deep Neural Networks2017

    • Author(s)
      Yasumasa Tamura, Xavier Defago
    • Organizer
      The 2nd International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 群知能に基づく深層学習アルゴリズムの検討2017

    • Author(s)
      田村康将
    • Organizer
      第13回情報科学ワークショップ
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi