• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Text Personalization with Automatic Summarization and Text Simplification

Research Project

Project/Area Number 17K12738
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionTokyo Institute of Technology

Principal Investigator

NISHIKAWA HITOSHI  東京工業大学, 情報理工学院, 助教 (00765026)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords自動要約 / 文簡約 / 深層学習 / 単一文書要約 / 自然言語処理
Outline of Final Research Achievements

We built a text-simplification corpus, and developed a model summarizing and simplifying texts with a large-scale automatic summarization corpus. We summarized and simplified newswire articles with that model. We implemented two models: a model which processed one article sentence-by-sentence, and a model which processed one whole article all at once. Those models were learned with the above corpora. Our quantitative experiments showed that a model that combined the above two models could generate better outputs than the single model did in terms of automatic quantitative evaluation methods such as BLEU, ROUGE, and SARI.

Academic Significance and Societal Importance of the Research Achievements

情報化社会の進展に伴い,自動要約および平易化といった,テキストの読解を支援する技術への需要が高まっている.長いテキストから重要箇所を抽出し短くまとめる「要約」は読み手の迅速な内容把握を可能にし,大量の文献の読解や調査などを必要とする知識労働者の生産性を大幅に向上せしめることが期待される.また,専門用語などの難解な表現に対し削除及び易しい表現への置換を行う「平易化」は外国人や子供など語彙知識が不足している読み手の読解を補助する.これらを組み合わせ読み手に合わせてテキストを柔軟に変化させることによって電子化されたテキストを読解する幅広い層に対して読解支援を行うことが可能となる.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2020 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] 大規模格フレームによる解候補削減を用いたニューラルネットゼロ照応解析2019

    • Author(s)
      山城颯太, 西川仁, 徳永健伸
    • Journal Title

      自然言語処理

      Volume: 印刷中

    • NAID

      130007706819

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] 外界一人称と二人称を考慮する日本語述語項構造解析の分野適応2019

    • Author(s)
      珊瑚彩主紀, 西川仁, 徳永健伸
    • Journal Title

      自然言語処理

      Volume: 印刷中

    • NAID

      130007706817

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] ニューステキストの要約及び平易化2020

    • Author(s)
      菅井内音,西川仁,徳永健伸
    • Organizer
      言語処理学会第26回年次大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Effectiveness of Domain Adaptation in Japanese Predicate-Argument Structure Analysis2018

    • Author(s)
      Mizuki Sango, Hitoshi Nishikawa, and Takenobu Tokunaga
    • Organizer
      The 32nd Pacific Asia Conference on Language, Information and Computation
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Neural Japanese Zero Anaphora Resolution using Smoothed Large-scale Case Frames with Word Embedding2018

    • Author(s)
      Souta Yamashiro, Hitoshi Nishikawa, and Takenobu Tokunaga
    • Organizer
      The 32nd Pacific Asia Conference on Language, Information and Computation
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi