• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Probabilistic model-based time-series forecasting neural networks and related applications to biosignal forecasting

Research Project

Project/Area Number 17K12752
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Soft computing
Research InstitutionKyushu University

Principal Investigator

Hayashi Hideaki  九州大学, システム情報科学研究院, 助教 (00790015)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsニューラルネットワーク / 深層学習 / 時系列予測 / 確率モデル / 生体信号 / 生体信号解析 / パターン認識 / 機械学習 / 時系列解析 / 時系列 / 時系列信号 / 予測
Outline of Final Research Achievements

We proposed mathematical models that can represent biological signals, which are electrical signals that can be measured from the human body, and applied them to the analysis of actual data. For example, we modeled myoelectric signals, which are electrical signals of muscles, and applied them to the analysis of muscle strength. We also proposed models for electrocardiogram and electroencephalogram and applied them to signal classification. Furthermore, we developed neural networks based on probabilistic models, and applied them to data classification and time series forecasting. In addition, we constructed large medical datasets such as biological signals of a pregnant woman called cardiotocography and endoscopic images, and applied them to fetal condition prediction and organ classification.

Academic Significance and Societal Importance of the Research Achievements

学術的意義として最大の点は,本研究においてニューラルネットワーク(NN)へのドメイン知識埋め込み法を提案している点である.提案法では,データの特性を確率モデルに基づき表現し,それをNNへ埋め込むことで解釈性や汎化性を向上させる.
社会的意義としては,生体信号の予測が実現できれば医療モニタリング応用に役立つ.在宅医療を受ける患者は約18万人いるとされる(2017年厚生労働省調べ).そのような患者に対し,自宅でも計測が容易な血圧や指尖容積脈波などと提案法を組み合わせることにより容態変化を予測することができれば,異常が起こる前に医師に連絡することができスムーズな治療が期待できる.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (34 results)

All 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (2 results) Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 3 results) Presentation (26 results) (of which Int'l Joint Research: 12 results) Book (1 results)

  • [Int'l Joint Research] University of Cambridge(英国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Cambridge(英国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Markerless Measurement and Evaluation of General Movements in Infants Scientific Reports2020

    • Author(s)
      Toshio Tsuji, Shota Nakashima, Hideaki Hayashi, Zu Soh, Akira Furui, Taro Shibanoki, Keisuke Shima, Koji Shimatani
    • Journal Title

      Scientific Reports

      Volume: 10 Issue: 1 Pages: 1422-1422

    • DOI

      10.1038/s41598-020-57580-z

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Combining Noise-to-Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection2019

    • Author(s)
      Changhee Han, Leonardo Rundo, Ryosuke Araki, Yudai Nagano, Yujiro Furukawa, Giancarlo Mauri, Hideki Nakayama, Hideaki Hayashi
    • Journal Title

      IEEE Access

      Volume: 7 Pages: 156966-156977

    • DOI

      10.1109/access.2019.2947606

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Biosignal Generation and Latent Variable Analysis with Recurrent Generative Adversarial Networks2019

    • Author(s)
      Shota Harada, Hideaki Hayashi, Seiichi Uchida
    • Journal Title

      IEEE Access

      Volume: 7 Pages: 144292-144302

    • DOI

      10.1109/access.2019.2934928

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] GlyphGAN: Style-Consistent Font Generation Based on Generative Adversarial Networks2019

    • Author(s)
      Hideaki Hayashi, Kohtaro Abe, Seiichi Uchida
    • Journal Title

      Knowledge-Based Systems

      Volume: 186 Pages: 104927-104927

    • DOI

      10.1016/j.knosys.2019.104927

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Scale Mixture-based Stochastic Model of Surface EMG Signals with Variable Variances2019

    • Author(s)
      Akira Furui, Hideaki Hayashi, and Toshio Tsuji
    • Journal Title

      IEEE Transactions on Biomedical Engineering

      Volume: 印刷中 Issue: 10 Pages: 2780-2788

    • DOI

      10.1109/tbme.2019.2895683

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Layer-Wise Interpretation of Deep Neural Networks Using Identity Initialization2021

    • Author(s)
      Shohei Kubota, Hideaki Hayashi, Tomohiro Hayase, Seiichi Uchida
    • Organizer
      International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Discriminative Gaussian Mixture Model with Sparsity2021

    • Author(s)
      Hideaki Hayashi and Seiichi Uchida
    • Organizer
      International Conference on Learning Representations (ICLR 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Regularized Pooling2020

    • Author(s)
      Takato Otsuzuki, Hideaki Hayashi, Yuchen Zheng, Seiichi Uchida
    • Organizer
      International Conference on Artificial Neural Networks (ICANN 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Handwriting Prediction Considering Inter-Class Bifurcation Structures2020

    • Author(s)
      Masaki Yamagata, Hideaki Hayashi, and Seiichi Uchida
    • Organizer
      International Conference on Frontiers of Handwriting Recognition (ICFHR 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 深層パーセプトロンの単位初期化に基づく中間層の貢献度と尤度の解析2020

    • Author(s)
      久保田祥平,早志英朗,早瀬友裕,内田誠一
    • Organizer
      電子情報通信学会技術研究報告
    • Related Report
      2020 Annual Research Report
  • [Presentation] 正則化プーリング2020

    • Author(s)
      緒續隆人,早志英朗,Zheng Yuchen,内田誠一
    • Organizer
      電子情報通信学会技術研究報告
    • Related Report
      2020 Annual Research Report
  • [Presentation] クラスの存在を利用した時系列予測とその手書きパターンへの応用2020

    • Author(s)
      山縣将貴,早志英朗,内田誠一
    • Organizer
      電子情報通信学会技術研究報告
    • Related Report
      2020 Annual Research Report
  • [Presentation] 識別・生成のハイブリッドモデルと弱教師あり学習への応用2020

    • Author(s)
      早志英朗,内田誠一
    • Organizer
      画像の認識・理解シンポジウム (MIRU)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 単位初期化による深層パーセプトロン学習:ヤコビ行列を用いた誤差逆伝播に関する考察2020

    • Author(s)
      久保田祥平,早志英朗,早瀬友裕,内田誠一
    • Organizer
      画像の認識・理解シンポジウム (MIRU)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Class-Guided Handwriting Prediction with Uncertainty2020

    • Author(s)
      Masaki Yamagata, Hideaki Hayashi, Seiichi Uchida
    • Organizer
      画像の認識・理解シンポジウム (MIRU)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 識別と生成のハイブリッドニューラルネットワーク2020

    • Author(s)
      早志英朗,内田誠一
    • Organizer
      パターン認識・メディア理解研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Efficient Soft-Constrained Clustering for Group-Based Labeling2019

    • Author(s)
      Ryoma Bise, Kentaro Abe, Hideaki Hayashi, Kiyohito Tanaka, and Seiichi Uchida
    • Organizer
      The 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Modality Conversion of Handwritten Patterns by Cross Variational Autoencoders2019

    • Author(s)
      Taichi Sumi, Brian Kenji Iwana, Hideaki Hayashi, and Seiichi Uchida
    • Organizer
      The 15th International Conference on Document Analysis and Recognition (ICDAR 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Page Segmentation using a Convolutional Neural Network with Trainable Co-occurrence Features2019

    • Author(s)
      Joonho Lee, Hideaki Hayashi, Wataru Ohyama, and Seiichi Uchida
    • Organizer
      The 15th International Conference on Document Analysis and Recognition (ICDAR 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Endoscopic Image Clustering with Temporal Ordering Information Based on Dynamic Programming2019

    • Author(s)
      Shota Harada, Hideaki Hayashi, Ryoma Bise, Kiyohito Tanaka, Qier Meng, and Seiichi Uchida
    • Organizer
      The 41st International Engineering in Medicine and Biology Conference (EMBC2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Cardiotocogramの識別に基づく胎児の状態推定2019

    • Author(s)
      原田翔太, 早志英朗, 古賀俊介, 重見大介, 柴田綾子, 吉田昌義, 蓮尾泰之, 内田誠一
    • Organizer
      医用画像研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] 混合正規分布に基づくニューラルネットワークのスパースベイズ学習2018

    • Author(s)
      早志英朗,内田誠一
    • Organizer
      パターン認識・メディア理解研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] A Trainable Multiplication Layer for Auto-correlation and Co-occurrence Extraction2018

    • Author(s)
      Hideaki Hayashi and Seiichi Uchida
    • Organizer
      14th Asian Conference on Computer Vision
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Multiplication Layer for Sequence Data2018

    • Author(s)
      Joonho Lee, Hideaki Hayashi, Seiichi Uchida
    • Organizer
      電気・情報関係学会九州支部連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] A Trainable Multiplication Layer2018

    • Author(s)
      Hideaki Hayashi and Seiichi Uchida
    • Organizer
      画像の認識・理解シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] A Trainable Multiplication Layer and its Applications2018

    • Author(s)
      Hideaki Hayashi and Seiichi Uchida
    • Organizer
      14th Joint Workshop on Machine Perception and Robotics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Biosignal Data Augmentation Based on Generative Adversarial Networks2018

    • Author(s)
      Shota Harada, Hideaki Hayashi, Seiichi Uchida
    • Organizer
      The 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'18)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Probabilistic Model-based Neural Network2017

    • Author(s)
      Hideaki Hayashi
    • Organizer
      The 13th Joint Workshop on Machine Perception and Robotics (MPR 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Generative Adversarial Networksに基づく生体信号生成2017

    • Author(s)
      原田翔太,早志英朗,内田誠一
    • Organizer
      電気・情報関係学会九州支部連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Johnson分布に基づくニューラルネットワーク2017

    • Author(s)
      早志英朗,内田誠一,辻敏夫
    • Organizer
      パターン認識・メディア理解研究会
    • Related Report
      2017 Research-status Report
  • [Presentation] A Time-series Discriminant Component Network2017

    • Author(s)
      Hideaki Hayashi and Toshio Tsuji
    • Organizer
      第20回画像の認識・理解シンポジウム (MIRU2017)
    • Related Report
      2017 Research-status Report
  • [Book] Infinite Brain MR Images: PGGAN-based Data Augmentation for Tumor Detection. In Neural Approaches to Dynamics of Signal Exchanges, (Eds. by A. Esposito, M. Faundez-Zanuy, F.C. Morabito, and E. Pasero)2020

    • Author(s)
      Changhee Han, Leonardo Rundo, Ryosuke Araki, Yujiro Furukawa, Giancarlo Mauri, Hideki Nakayama, and Hideaki Hayashi
    • Total Pages
      521
    • Publisher
      Springer
    • ISBN
      9789811389504
    • Related Report
      2019 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi