• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Locomotion Control for Legged Robot using Hierarchical Multi-Objective Reinforcement Learning

Research Project

Project/Area Number 17K12759
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent robotics
Research InstitutionNara Institute of Science and Technology

Principal Investigator

Kobayashi Taisuke  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (10796452)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords知能ロボティクス / 強化学習 / 多目的最適化 / 継続学習 / 歩行 / 知能ロボティックス
Outline of Final Research Achievements

The purpose of this study is to achieve locomotion control of legged robot as a hierarchical multi-objective optimization problem. With the establishment of this technology, physical constraints and trade-offs can be explicitly considered, and animal-like natural locomotion can be expected.
Three outcomes related to this study, (1) regularization technique that can continuously accumulate learning results without forgetting, (2) policy with search ability to discover global optimal solutions, (3) structured neural networks that facilitate modularization and hierarchy of knowledge. By combining these techniques on a curriculum that sequentially learns locomotion of a quadrupedal robot from the lower hierarchical modules to the upper hierarchical modules, we succeeded in generating the locomotion on a simulation model of the developed quadrupedal robot.

Academic Significance and Societal Importance of the Research Achievements

本研究の脚ロボットの学習制御は,近年の入出力関係を直接学習してしまう大雑把なやり方では隠蔽されてしまう知識の階層関係や構成要素を.これまでの歩容に関する研究を踏まえて明示的に与えて継続的に学習を積み重ねていくことが可能な枠組みを提供しており,機械学習分野とロボティクス分野の融合領域として高い学術的意義がある.また,安定かつ高効率な歩容制御の確立はロボットの移動範囲を格段に広げて日常的にロボットが活躍するための基礎技術となり,今後のロボット共生社会の実現に繋がるものと期待できる.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results) Remarks (2 results)

  • [Journal Article] Student-t policy in reinforcement learning to acquire global optimum of robot control2019

    • Author(s)
      Taisuke Kobayashi
    • Journal Title

      Applied Intelligence

      Volume: 49 Issue: 12 Pages: 4335-4347

    • DOI

      10.1007/s10489-019-01510-8

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] Continual Learning Exploiting Structure of Fractal Reservoir Computing2019

    • Author(s)
      Taisuke Kobayashi and Toshiki Sugino
    • Organizer
      International Conference on Artificial Neural Networks
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] フラクタルリザーバコンピューティングを用いた4脚ロボットの階層強化学習2019

    • Author(s)
      杉野 峻生,小林 泰介,杉本 謙二
    • Organizer
      ロボティクス・メカトロニクス講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] パラメータの定着とスパース化を統合した正則化による継続学習2019

    • Author(s)
      小林 泰介
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] フラクタルリザーバコンピューティングを用いた継続学習2018

    • Author(s)
      杉野 峻生,小林 泰介,杉本 謙二
    • Organizer
      ロボティクス・メカトロニクス講演会
    • Related Report
      2018 Research-status Report
  • [Presentation] Continual Learning using Modularity of Structured Reservoir Computing2018

    • Author(s)
      Toshiki Sugino, Taisuke Kobayashi, Kenji Sugimoto
    • Organizer
      SICE Annual Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Check Regularization: Combining Modularity and Elasticity for Memory Consolidation2018

    • Author(s)
      Taisuke Kobayashi
    • Organizer
      International Conference on Artificial Neural Networks
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 大域的最適解を目指すActor-Critic強化学習2017

    • Author(s)
      小林 泰介
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2017 Research-status Report
  • [Remarks] リザーバコンピューティングを用いた学習内容再利用のための継続階層学習

    • URL

      http://genesis.naist.jp/achievements/m2018_2/

    • Related Report
      2019 Annual Research Report
  • [Remarks] オンライン強化学習 | Taisuke Kobayashi

    • URL

      https://kbys_t.gitlab.io/research/reinforcement_learning/

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2021-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi