• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Study on Electroencephalogram Analysis Method Considering Individual Differences to Communication BCI

Research Project

Project/Area Number 17K12768
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Kansei informatics
Research InstitutionThe University of Tokushima

Principal Investigator

ITO Shin-ichi  徳島大学, 大学院社会産業理工学研究部(理工学域), 助教 (90547655)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords脳波 / 個人差 / 灰色理論 / 嗜好 / 意思検出 / BCI / 深層学習 / 性格 / サポートベクターマシン / 聴く意思 / 意思 / ノイズ除去 / 感性情報学 / 感性計測評価 / 独立成分分析 / 遺伝的アルゴリズム / 意思伝達
Outline of Final Research Achievements

In checking whether human understands contents of learning, Center cumulative frequency comparison (CCFC) method was used to judge EEG signals or EEG signals with artifact. Multistage independent components analysis (MICA) was proposed to remove artifact and noise signals. Multi-layer perceptron was used to judge whether human understands contents of learning. The experimental results showed 68.3% of recognition accuracy.
In detecting preference of listening to sounds, Gray associate degree was calculated to extract the features of EEG signals and remove the noise signals. Support vector machine (SVM) was used to detect the preference. The experimental results showed 88.27% of detection accuracy.
In human-wants detection during exposure to music, Convolutional neural networks (CNNs) was used to extract the features of EEG and remove the noise signals. The SVM was used to detect the human-wants. The experimental results showed 99.4% of recognition accuracy.

Academic Significance and Societal Importance of the Research Achievements

学習理解の有無の検出では68.3%の判別精度、聴取音に対する好みの音の検出では88.35の検出精度、聴取音楽に対する聴く意思の検出では99.4%の分類精度、を実現するに至った。これらの研究成果は、意思を司る前頭前野脳波からその意思を直接的に検出するため、訓練を必要としない意思伝達BCI の構築が可能になるという学術的意義をもつ。また、IoTでも使用可能な感性インタフェースの構築に役立つという社会的意義をもつ。とくに、介護・医療や教育現場などにおいて、真意を伝えるコミュニケーションの支援、などの新たなヒューマンインタフェースの構築など、幅広い分野での貢献が期待できる。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (9 results)

All 2019 2018 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results) Remarks (4 results)

  • [Journal Article] An Electroencephalogram Analysis Method to Detect Preference Patterns Using Gray Association Degrees and Support Vector Machines2019

    • Author(s)
      Shin-ichi Ito, Momoyo Ito and Minoru Fukumi
    • Journal Title

      Advances in Science, Technology and Engineering Systems

      Volume: 3 Issue: 5 Pages: 105-108

    • DOI

      10.25046/aj030514

    • NAID

      120006532433

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] A Method to Detect Presence or Absence of Learning Understanding Using Center Cumulative Frequency Comparison Method and Multistage ICA2019

    • Author(s)
      Hisaki Omae, Shin-ichi Ito, Momoyo Ito and Minoru Fukumi
    • Organizer
      SAMCON 2019
    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] An Electroencephalogram Analysis Method to Detect Answers of Questions Using Machine Learning Techniques2019

    • Author(s)
      Shin-ichi Ito
    • Organizer
      2019 International Conference for Leading and Young Computer Scientists
    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A Method to Check whether Human Understands Contents of Learning Using Electroencephalogram2018

    • Author(s)
      Hisaki Omae, Shin-ichi Ito, Momoyo Ito and Minoru Fukumi
    • Organizer
      6th IIAE International Conference on Intelligent Systems and Image Processing 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] An Electroencephalogram Analysis Method to Detect Preference Using Gray Association Degree2018

    • Author(s)
      Shin-ichi Ito
    • Organizer
      International Conference on Electronics, Information, and Communication 2018
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Remarks] 研究活動総覧

    • URL

      http://pub2.db.tokushima-u.ac.jp/ERD/person/189119/work-ja.html

    • Related Report
      2019 Annual Research Report
  • [Remarks] 研究教育総覧 伊藤伸一

    • URL

      http://pub2.db.tokushima-u.ac.jp/ERD/person/189119/profile-ja.html

    • Related Report
      2018 Research-status Report
  • [Remarks] ヒューマンセンシング研究室

    • URL

      https://sites.google.com/view/humansensinglab

    • Related Report
      2018 Research-status Report 2017 Research-status Report
  • [Remarks] 研究教育総覧 伊藤伸一

    • URL

      http://pub2.db.tokushima-u.ac.jp/ERD/person/189119/work-ja.html

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi