• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Three-way three-mode dimensional data analysis for biometric data

Research Project

Project/Area Number 17K12797
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Library and information science/Humanistic social informatics
Research InstitutionDoshisha University (2020-2021)
Wakayama Medical University (2017-2019)

Principal Investigator

Tanioka Kensuke  同志社大学, 生命医科学部, 助教 (40782818)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsクラスタリング法 / スパース推定 / 次元縮約 / 次元縮約クラスタリング / 次元縮約法 / パス解析 / MMアルゴリズム / fMRIデータ解析 / クラスタリング / 次元縮約クラスタリング法 / 多相多元データ解析 / 多変量データ解析
Outline of Final Research Achievements

We have developed a data analysis method to simultaneously grasp the classification structure of subjects and related features from the tuple (subject, variable, condition), which is called Three-way three-mode data. We also developed a dimensional reduction clustering method that can identify regions of difference between conditions even in noisy data. We also developed a sparse dimensionality reduction clustering method based on path analysis. As a result of this research, seven papers have been published, one is in submission and one is in preparation for submission.

Academic Significance and Societal Importance of the Research Achievements

情報技術の発達に伴うデータの大規模複雑化により,解析者はより複雑なデータを処理する必要に迫られている.3相3元データはそのような大規模複雑データのひとつであり,対象×変量×条件の3組間の構造を表現したデータであり,各固有の特徴を解釈することは困難である.今回開発した次元縮約クラスタリング法を用いることで,変量や条件固有の特徴を把握することが可能となる.また,パス解析の考えやスパース推定も加えた方法によって解析者の仮説をデータから検証し,解釈すべき項目数を削減することができることから,より解析者が容易に当該構造を解釈することが可能となる.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (20 results)

All 2022 2021 2020 2019 2018 2017

All Journal Article (7 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 7 results,  Open Access: 4 results) Presentation (13 results) (of which Int'l Joint Research: 9 results,  Invited: 1 results)

  • [Journal Article] Thresholding Approach for Low-Rank Correlation Matrix Based on MM Algorithm2022

    • Author(s)
      Tanioka Kensuke、Furotani Yuki、Hiwa Satoru
    • Journal Title

      Entropy

      Volume: 24 Issue: 5 Pages: 579-579

    • DOI

      10.3390/e24050579

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Low-Rank Approximation of Difference between Correlation Matrices Using Inner Product2021

    • Author(s)
      Tanioka Kensuke、Hiwa Satoru
    • Journal Title

      Applied Sciences

      Volume: 11 Issue: 10 Pages: 4582-4582

    • DOI

      10.3390/app11104582

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Revealing Changes in Brain Functional Networks Caused by Focused-Attention Meditation Using Tucker3 Clustering2020

    • Author(s)
      Miyoshi Takuma、Tanioka Kensuke、Yamamoto Shoko、Yadohisa Hiroshi、Hiroyasu Tomoyuki、Hiwa Satoru
    • Journal Title

      Frontiers in Human Neuroscience

      Volume: 13 Pages: 1-11

    • DOI

      10.3389/fnhum.2019.00473

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Simultaneous method of orthogonal non-metric non-negative matrix factorization and constrained non-hierarchical clustering2019

    • Author(s)
      Kensuke Tanioka, Hiroshi Yadohisa
    • Journal Title

      Journal of Classification

      Volume: 36 Issue: 1 Pages: 73-93

    • DOI

      10.1007/s00357-018-9284-8

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Constrained nonmetric principal component analysis2019

    • Author(s)
      Yuki Yamagishi, Kensuke Tanioka, Hiroshi Yadohisa
    • Journal Title

      Behaviormetrika

      Volume: 46 Issue: 2 Pages: 313-332

    • DOI

      10.1007/s41237-019-00087-3

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Unfolding models for asymmetric dissimilarity data with external information based on path structures2018

    • Author(s)
      Tanioka, K. and Yadohisa, H.
    • Journal Title

      International Journal of Software Innovation

      Volume: 6 Issue: 3 Pages: 53-66

    • DOI

      10.4018/ijsi.2018070104

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymmetric MDS with Categorical External Information Based on Radius Model2018

    • Author(s)
      Tanioka, K and Yadohisa, H.
    • Journal Title

      Procedia Computer Science

      Volume: 140 Pages: 284-291

    • DOI

      10.1016/j.procs.2018.10.318

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 低ランク近似に基づく相関行列の差の推定について2020

    • Author(s)
      谷岡健資,日和悟
    • Organizer
      日本計算機統計学会 第34回シンポジウム
    • Related Report
      2020 Research-status Report
  • [Presentation] Dimensional reduction clustering with modified outcome method2019

    • Author(s)
      Kensuke Tanioka, Hiroshi Yadohisa
    • Organizer
      16th Conferenceof the International Federation of Classification Societies
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Joint analysis of the low rank correlation matrices and clustering based on majorization2019

    • Author(s)
      Kensuke Tanioka, Satoru Hiwa, Tomoyuki Hiroyasu, Hiroshi Yadohisa
    • Organizer
      25TH ANNUAL MEETING OF THE ORGANIZATION FOR HUMAN BRAIN MAPPING
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ワーキングメモリ課題における課題負荷量が脳機能ネットワーク構造に及ぼす影響: 機能的結合行列の低ランク近似に基づく検討2018

    • Author(s)
      相本武瑠, 風呂谷侑希,谷岡健資,日和悟,宿久洋,廣安知之
    • Organizer
      第 16 回日本ワーキングメモリ学会大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 相関行列の差の内積に対するクラスタリングを伴う低ランク近似について2018

    • Author(s)
      谷岡健資, 日和悟, 廣安知之, 宿久洋
    • Organizer
      2018年度人工知能学会全国大会(第32回)
    • Related Report
      2018 Research-status Report
  • [Presentation] 脳機能ネットワークに対する相関分析法について2017

    • Author(s)
      谷岡健資,日和悟,廣安知之,宿久洋
    • Organizer
      2017年度人工知能学会全国大会(第31回)
    • Related Report
      2017 Research-status Report
  • [Presentation] Generalized Structured Component Analysis for dissimilarity data and multivariate data2017

    • Author(s)
      Kensuke Tanioka, Hiroshi Yadohisa
    • Organizer
      Big Data, Cloud Computing, and Data Science Engineering (BCD 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Constrained Principal Component Analysis for Nonmetric Data2017

    • Author(s)
      Yuki Yamagishi, Kensuke Tanioka, Hiroshi Yadohisa
    • Organizer
      61th World Statistics Congress
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Dimension Reduction Clustering based on Constrained Centroids2017

    • Author(s)
      Kensuke Tanioka
    • Organizer
      International Federation of Classification Societies 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Cluster Difference Scaling for Asymmetric Dissimilarity Data based on Unfolding models2017

    • Author(s)
      Kensuke Tanioka, Hiroshi Yadohisa
    • Organizer
      Hangzhou International statistical symposium
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Two Stage Approach to Data-Driven Subgroup Identification in Clinial Trials2017

    • Author(s)
      Toshio Shimokawa, Kensuke Tanioka,
    • Organizer
      New Zealand Statistical Association and the International Association of Statistical Computing (Asian Regional Section) Joint Conference 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Adjusted Adaptive Index Model For Binary Response2017

    • Author(s)
      Ke Wan, Kensuke Tanioka, Kun Yang, Toshio Shimokawa
    • Organizer
      New Zealand Statistical Association and the International Association of Statistical Computing (Asian Regional Section) Joint Conference 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Clusterwise Low-Rank Correlation Analysis Based on Majorization2017

    • Author(s)
      Kensuke Tanioka, Hiroshi Yadohisa
    • Organizer
      New Zealand Statistical Association and the International Association of Statistical Computing (Asian Regional Section) Joint Conference 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi