Development of Nanogap Devices For High Temperature Environments Using Nano Electro Mechanical System
Project/Area Number |
17K14100
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Nano/Microsystems
|
Research Institution | Chiba Institute of Technology |
Principal Investigator |
Suga Hiroshi 千葉工業大学, 工学部, 准教授 (60513801)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | NEMS / 抵抗変化素子 / ナノギャップ / ナノエレクトロニクス / 記憶素子 / フラーレン / ナノ電極 / 不揮発性記憶素子 / ナノギャップ素子 / ナノマイクロシステム / マイクロ・ナノデバイス / ナノマシン / 電子デバイス |
Outline of Final Research Achievements |
A nanogap NEMS structure was fabricated and the atomic diffusion prevention mechanism of the two-element nanogap NEMS was evaluated. While a conventional nanogap element loses its function as a non-volatile memory element due to leakage current, the nanogap NEMS structure suppresses the leakage current because of the atom diffusion prevention mechanism in high temperature environments. The non-volatile memory element functionality was maintained even at temperatures above 627 K. We also fabricated a nanogap NEMS with a fullerene encapsulating metal. We studied the nanogap NEMS device using carbon-based nanomaterials containing metallic elements. A planar device was fabricated using a method that forms a thin line of fullerene molecules, and its characteristics were evaluated. To understand this mechanism, we studied the fundamental technologies for transmission electron microscopy experiments such as the nanogap device fabrication method and the crystal control technology.
|
Academic Significance and Societal Importance of the Research Achievements |
2元素からなるナノギャップNEMSにより,900°C環境におけるリーク電流防止機構機能を実現した.高温環境でも機能喪失しない電子デバイスの創成に道を拓いた.また,自己組織化技術を応用して,金属元素を内包する炭素系ナノ材料を用いた2元素NEMS平面素子を製作し,その抵抗スイッチ特性を確かめ,Nano Material Electrical Systemへの道を拓いた.NEMS素子評価のための透過型電子顕微鏡観察実験のための試料加工技術や結晶制御技術など確立した.
|
Report
(3 results)
Research Products
(25 results)