Plasmonic resonator for quantum dot LEDs responding on a picosecond time scale in the on-chip devices
Project/Area Number |
17K14118
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Thin film/Surface and interfacial physical properties
|
Research Institution | Kyushu University |
Principal Investigator |
Saito Hikaru 九州大学, 総合理工学研究院, 助教 (50735587)
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | プラズモニクス / 電子顕微鏡 / カソードルミネセンス / 電子エネルギー損失分光 / プラズモニック結晶 / Purcell効果 / EELS / 表面プラズモン / カソードルミネッセンス / 量子ドット / LED |
Outline of Final Research Achievements |
In this study, a new electron microspectroscopy has been developed to evaluate microscopic energy transfer from the excited states of fluorescent materials to plasmonic resonators in the expectation that mechanism of life time reduction in such a combined system can be elucidated. Indeed, the energy transfer was detected as a change in angular distribution of the luminescent intensity. In order to apply the above experiment for more practical on-chip devices, modal characterization was performed on plasmonic crystals in which fluorescent thin film can be imbedded.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでプラズモン共振器による物質蛍光緩和の高速化は無数に配列された共振器群の平均的な特性として評価されてきたが、本研究では単一の共振器においてエネルギー移動を観測することに成功した。この新たな測定技術を基盤として、光-物質相互作用と発光緩和高速化の定式化を目指した研究へと発展することが今後期待され、光デバイスの高速化と小型化へ向けた開発の加速へ貢献すると期待される。
|
Report
(3 results)
Research Products
(7 results)