Project/Area Number |
17K14145
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Computational science
|
Research Institution | University of Fukui |
Principal Investigator |
LEI XIAOWEN 福井大学, 学術研究院工学系部門, 准教授 (50726148)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 低次元ナノ炭素材料 / 転位 / 回位 / 自発曲率 / 曲面設計論 / 低次元ナノ炭素構造体 / 格子欠陥 / 曲率 / 低次元炭素材料 / 弾性力学 / 原子シミュレーション / 炭素材料 |
Outline of Final Research Achievements |
In a three-dimensional structure, a singular stress field is formed around dislocation or disclination defined as a line defect. On the other hand, when a defect is introduced into the two-dimensional structure, the stress field around the defect acts as a driving force for changing the curvature, and the stress field is relaxed and the shape is changed. It is considered that the configuration of low-dimensional materials can be controlled by positively utilizing this mechanism. The out-of-plane deformation mechanism formed by introducing defects into the perfect crystal of a low-dimensional nanocarbon structure in a periodic array of six-membered such as a graphene sheet or a carbon nanotube is considered to be a change of spontaneous curvature. And the purpose is to understand the change and control the out-of-plane deformation due to the generation, disappearance, and movement of defects, and to acquire the design principle of morphology control of nanostructures.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノ低次元材料に現れる原子結合の切断やくい違いを伴う再結合などの格子欠陥の生成・消滅・運動といったダイナミクスは、同時に顕著な曲率の変化をもたらす点に特徴がある。ナノ低次元材料の変形理論の構築は、その構造健全性や不安定現象を利用した形態形成のメカニズムの普遍的知見の獲得に結びついている。さらにはナノスケールの構造にとどまらず、微細構造を有する構造体の曲率変化によるアダプティブな応答を利用したスマート構造化、およびトポロジー最適化などに結びつく可能性がある。その基礎となる幾何学は微分幾何学を基礎とする応用数学の発展に寄与するなど、多くの異分野への波及効果が期待できる。
|
Report
(4 results)
Research Products
(34 results)