Multi-physics topology optimisation in periodic domain for design of micro phononic crystals
Project/Area Number |
17K14146
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Computational science
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | フォノニック構造 / 音響ダイオード / トポロジー最適化 / 境界要素法 / 高速算法 / フォノニック結晶 / 音響メタマテリアル / 波動デバイス / 設計工学 / 計算物理 / 先端機能デバイス / 周期構造 |
Outline of Final Research Achievements |
Phononic structure (artificial material consisting of several elastic materials arranged periodically) has widely been investigated. With the development of micro fabrication, it has become possible to realise micro- or nanometer-scale phononic structures. Such structures may enable not only vibration control and soundproofing (which has been considered as possible applications of the phononic structures) but also more sophisticated sound and vibration controls. In this study, to further enhance the range of applications of micro-phononic structures, we developed optimal design methods. Specifically, we developed and validated a topology optimisation method for periodic structures having desired dispersion relations and novel devices using these structures.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果は、次世代音響・振動制御技術の鍵となりうる微細フォノニック結晶の最適な設計法を提供し、工学の様々な分野における課題となっている騒音・振動の抑制に貢献するものである。音響ダイオードなどの新奇の波動伝播機構を有するデバイスの実現を示唆したことも学術的に意義深い。また、本研究で開発した新しいトポロジー最適化法はフォノニック構造以外の最適設計にも適用可能であり、工学の広い分野への波及効果がある。
|
Report
(5 results)
Research Products
(57 results)