• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Visible actions on spherical homogeneous spaces and applications to non-commutative harmonic analysis

Research Project

Project/Area Number 17K14155
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

Tanaka Yuichiro  東京大学, 大学院数理科学研究科, 特任助教 (70780063)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsリー群 / 可視的作用 / 非可換調和解析 / 無重複表現 / 球等質空間 / 等質空間 / カルタン分解 / 球多様体 / コンパクトリー群 / コイソトロピック作用
Outline of Final Research Achievements

In the first year I studied visible actions of compact Lie groups from the viewpoint of symplectic geometry. The theory of visible actions on complex manifolds has been introduced by T. Kobayashi with the aim of uniform treatment of multiplicity-free representations of Lie groups. I proved the equivalence of visibility and coisotropicity for actions of compact Lie groups under the Hamiltonian setting.
In the second year I studied the Cartan decomposition. From the viewpoints of harmonic analysis on homogeneous spaces and branching problems for representations of real reductive groups, Kobayashi introduced a conjecture on the Cartan decomposition for real spherical subgroups in the 3rd Summer School on Number Theory 1995. I proved that Kobayashi's conjecture is true in general.
In the third year I extended the symmetry of spherical functions and Helgason Fourier transform to reductive Riemannian Gelfand pairs.

Academic Significance and Societal Importance of the Research Achievements

1年目の研究成果は、笹木集夢氏による先行研究における線型作用の場合の結果(2009~2011年)の拡張になっている。
次の2年目の研究成果は小林俊行氏による実球等質空間に対する予想(1995年)のうちの1つに対する肯定的解決を与えており、またM. Flensted-Jensen氏(1978年)とW. Rossmann氏(1979年)による実簡約型対称対の場合の拡張になっている。
最後の3年目の研究成果は、リーマン対称対に対し知られていた非可換調和解析の結果の簡約型Gelfand対に対する拡張になっている。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 2 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results)

  • [Journal Article] A Cartan decomposition for a reductive real spherical homogeneous space2019

    • Author(s)
      Yuichiro Tanaka
    • Journal Title

      Kyoto Journal of Mathematics

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Visible actions of compact Lie groups on complex spherical varieties2019

    • Author(s)
      Yuichiro Tanaka
    • Journal Title

      Journal of Differential Geometry

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 複素球多様体へのコンパクトリー群による可視的作用について2019

    • Author(s)
      田中雄一郎
    • Journal Title

      数理解析研究所講究録

      Volume: 2139 Pages: 37-49

    • Related Report
      2019 Annual Research Report
  • [Presentation] A Cartan decomposition for a reductive real spherical homogeneous space2019

    • Author(s)
      Yuichiro Tanaka
    • Organizer
      6th Tunisian-Japanese Conference
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 複素球多様体への可視的作用とその応用2019

    • Author(s)
      田中雄一郎
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 複素球多様体へのコンパクトリー群による可視的作用について2019

    • Author(s)
      田中雄一郎
    • Organizer
      表現論とその周辺分野の進展
    • Related Report
      2019 Annual Research Report
  • [Presentation] 簡約型実球部分群に対するカルタン分解2019

    • Author(s)
      田中雄一郎
    • Organizer
      2018年度表現論ワークショップ
    • Related Report
      2018 Research-status Report
  • [Presentation] Visible actions of compact Lie groups on Hamiltonian manifolds2018

    • Author(s)
      田中雄一郎
    • Organizer
      2017年度表現論ワークショップ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 球等質空間に対する松木分解と球関数の構成2018

    • Author(s)
      田中雄一郎
    • Organizer
      龍谷表現論セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Visible actions of compact Lie groups on complex spherical varieties2017

    • Author(s)
      Yuichiro Tanaka
    • Organizer
      5th Tunisian-Japanese Conference
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi