• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automorphisms and periods of K3 surfaces

Research Project

Project/Area Number 17K14156
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

Hashimoto Kenji  東京大学, 大学院数理科学研究科, 特任研究員 (00793986)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2017: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
KeywordsK3曲面 / 格子理論 / 自己同型 / 有限群 / 無限群 / 保型形式 / ミラー対称性 / 代数幾何 / クレモナ変換 / カラビ・ヤウ多様体 / 格子
Outline of Final Research Achievements

K3 surfaces are important objects in various branches of mathematics. In this research we work over the complex numbers and they are 4-dimensional spaces in the ordinary meaning. One of our main interests is symmetry. In other words, we did the very detailed research on a "special" kind of K3 surfaces, in the same sense that equilateral triangles are special. In particular, we study K3 surfaces with higher symmetry; or determine the symmetry under some conditions (lower Picard numbers, and so on). In addition, we studied "periods" of K3 surfaces, which are important in the study of K3 surfaces. We observed the relation between these periods and so-called automorphic forms, and obtained concrete results. This is considered as a geometric approach to study automorphic forms.

Academic Significance and Societal Importance of the Research Achievements

K3曲面は数学において重要かつ基本的な研究対象と考えられる。従って、様々な場面でK3曲面の知識(情報)が必要あるいは有用となる。例えば、数学においてのみならず数理物理学でも重要であるカラビ・ヤウ3次元多様体の研究において、その2次元版と考えられるK3曲面がしばしば表れることがある。実際に、本研究においてもK3曲面の結果をこのような文脈において応用して成果を得ることができた。このような意味において、本研究の成果が今後応用されることが期待される。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2023 2022 2021 2020 2019 2018

All Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 4 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results)

  • [Journal Article] Examples of non-Kaehler Calabi-Yau 3-folds with arbitrarily large $b_2$2023

    • Author(s)
      Kenji Hashimoto and Taro Sano
    • Journal Title

      Geometry & Topology

      Volume: 27 Issue: 1 Pages: 131-152

    • DOI

      10.2140/gt.2023.27.131

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Extensions of maximal symplectic actions on K3 surfaces2021

    • Author(s)
      Brandhorst Simon、Hashimoto Kenji
    • Journal Title

      Annales Henri Lebesgue

      Volume: 4 Pages: 785-809

    • DOI

      10.5802/ahl.88

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] K3 surfaces with Picard number 2, Salem polynomials and Pell equation2020

    • Author(s)
      K. Hashimoto, JongHae Keum and Kwangwoo Lee
    • Journal Title

      J. Pure Appl. Algebra

      Volume: 224 no. 1 Issue: 1 Pages: 432-443

    • DOI

      10.1016/j.jpaa.2019.05.015

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reconstruction of general elliptic K3 surfaces from their Gromov?Hausdorff limits2019

    • Author(s)
      Hashimoto Kenji、Ueda Kazushi
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 147 Issue: 5 Pages: 1963-1969

    • DOI

      10.1090/proc/14428

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] ピカール数3のK3曲面の自己同型について2022

    • Author(s)
      橋本健治
    • Organizer
      特殊多様体・特殊関数研究会(北海道大学)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Finite symplectic actions on the K3 lattice2018

    • Author(s)
      Kenji Hashimoto
    • Organizer
      K3 surfaces and lattice theory seminar, 北海道教育大学札幌駅前サテライト
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Mirror symmetry for complete intersection K3 surfaces in weighted projective spaces2018

    • Author(s)
      Kenji Hashimoto
    • Organizer
      Working Workshop on Calabi--Yau Varieties and Related Topics, 学習院大学
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Period map of a certain family of K3 surfaces with an S_5 action2018

    • Author(s)
      Kenji Hashimoto
    • Organizer
      Japanese--European symposium on Symplectic Varieties and Moduli Spaces -third edition-, 東京理科大学
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Global sections of some special elliptic surfaces2018

    • Author(s)
      橋本健治
    • Organizer
      UC Riverside Algebraic Geometry Seminar
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Global sections of some special elliptic surfaces2018

    • Author(s)
      橋本健治
    • Organizer
      Workshop on algebraic surfaces, University of Hanover
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi