• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study of the relationship between the sectional invariants of polarized toric varieties and integral convex polytopes

Research Project

Project/Area Number 17K14172
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionNara Medical University

Principal Investigator

Kawaguchi Ryo  奈良県立医科大学, 医学部, 助教 (10573694)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords代数幾何学 / 偏極多様体 / 断面幾何種数 / トーリック多様体 / Weierstrass半群
Outline of Final Research Achievements

It is well known that tovic varieties are closely related with convex polytopes. In this study, we make use of this property to investigate various problems of algebraic geometry and algebraic combinatorics. As a result, we found the equivalence of the upper bound for the sectional genus of a polarized variety and the lower bound for the volume of a convex polytope. We also conducted a study of Weierstrass semigroups. A Weierstrass semigroup with prime degree satisfies a numerical condition called the MP condition if it is cyclic, but the converse is not valid in general. In this issue, we have proved the converse is true for a semigroup of a pointed curve on a toric surface.

Academic Significance and Societal Importance of the Research Achievements

図形(代数多様体)を方程式の解集合として捉える代数幾何学において, トーリック多様体は多面体の幾何学と深いつながりを持った特殊な多様体群であり, 重要な不変量の多くを対応する多面体の形や体積, 格子点の数といった情報から読み取ることができる. 不変量の一つである断面幾何種数には上限の公式があり, 多面体の体積については下限の公式が知られているが, 本研究ではこれらの公式が同値(つまり種数が上限に等しいことと対応する多面体の体積が下限に等しいことが同値)であることを発見した. 他にも, Weierstrass半群の巡回性に関する研究を行った.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results) (of which Invited: 2 results)

  • [Journal Article] Weierstrass semigroups satisfying the MP equalities and curves on toric surfaces2019

    • Author(s)
      Ryo Kawaguchi and Jiryo Komeda
    • Journal Title

      Bulletin of the Brazilian Mathematical Society, New Series

      Volume: 印刷中 Issue: 1 Pages: 107123-107123

    • DOI

      10.1007/s00574-019-00145-0

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed
  • [Presentation] The volume of polytopes associated to Castelnuovo varieties2019

    • Author(s)
      川口良
    • Organizer
      代数曲面論とその周辺
    • Related Report
      2019 Annual Research Report
  • [Presentation] トーリック多様体におけるCastelnuovo多様体の性質2018

    • Author(s)
      川口良
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] 偏極トーリック多様体の断面幾何種数の上限2017

    • Author(s)
      川口良
    • Organizer
      射影多様体の幾何とその周辺2017
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] トーリック曲面上の曲線とワイエルシュトラス半群のMP条件2017

    • Author(s)
      川口良
    • Organizer
      第5回代数幾何研究集会-宇部-
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi