• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Combinatorial homotopy theory of spaces and applications to sensor network using categories

Research Project

Project/Area Number 17K14183
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionShinshu University

Principal Investigator

Tanaka Kohei  信州大学, 学術研究院社会科学系, 助教 (70708362)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords組合せ的ホモトピー論 / 単体複体 / 圏 / 半順序集合 / LS category / Topological complexity / オイラー標数 / センサーネットワーク / Δ複体 / Finite space / Simplicial complex / Poset / Loopfree category / L-S category / Small category / Motion planning / 代数的位相幾何学 / 圏論 / ホモトピー論
Outline of Final Research Achievements

This study focused on developement of the combinatorial homotopy theory of simplicial complexes and posets (categories) and its applications. The combinatorial homotopy theory is based on removing points, unlike the classical homotopy theory of spaces based on continuous deformations. Such a descrete operation is compatible with design of algorithms, and we can expect practical applications.
This study developed the combinatorial homotopy theory, and considered applications to computation of topological invariants and sensor network theory with respect to Euler characteristic.We showed that the numerical invariants LS and TC of finite simplicial complexes can be calculated essentially by finite discrete operations and barycentric subdivisions.Moreover, we computed some Euler characteristic of the quotient categories by group actions.

Academic Significance and Societal Importance of the Research Achievements

本研究は点の消去に基づく組合せ的ホモトピー論の発展を後押しするとともに,それを用いて,ロボットモーション設計やセンサーネットワーク上の数え上げ理論など応用的な分野にアプローチしたものである.空間の複雑さを表す指標としていくつかの位相不変量を組合せ的に計算する方法を導出した.これらは,空間上のロボットの動きを制御するためのアルゴリズムが最低何種類必要かどうかという問題に密接に関わる不変量である.また,周期性や対称性を持つセンサーネットワーク上での効率的なターゲット数え上げ理論についても,いくつかのケースで有効な方法を発見した.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (15 results)

All 2019 2018 2017

All Journal Article (5 results) (of which Peer Reviewed: 5 results) Presentation (10 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Symmetric topological complexity for finite spaces and classifying spaces2019

    • Author(s)
      Kohei Tanaka
    • Journal Title

      Topological Methods in Nonlinear Analysis

      Volume: 54(2) Pages: 477-493

    • DOI

      10.12775/tmna.2019.048

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Lusternik--Schnirelmann category of relation matrices on finite spaces and simplicial complexes2019

    • Author(s)
      Kohei Tanaka
    • Journal Title

      Fundamenta Mathematicae

      Volume: 249(2) Issue: 2 Pages: 149-167

    • DOI

      10.4064/fm674-8-2019

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Strong homotopy types of acyclic categories and Δ-complexes. Applied Categorical Structures2018

    • Author(s)
      Kohei Tanaka
    • Journal Title

      Applied Categorical Structures

      Volume: 27 Issue: 3 Pages: 245-260

    • DOI

      10.1007/s10485-018-9552-0

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A combinatorial description of topological complexity for finite spaces2018

    • Author(s)
      Tanaka Kohei
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 18 Issue: 2 Pages: 779-796

    • DOI

      10.2140/agt.2018.18.779

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Lusternik--Schnirelmann category for categories and classifying spaces2018

    • Author(s)
      Tanaka Kohei
    • Journal Title

      Topology and its Applications

      Volume: 239 Pages: 65-80

    • DOI

      10.1016/j.topol.2018.02.031

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Topological and combinatorial approach to symmetric motion planning2019

    • Author(s)
      田中 康平
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Topological and combinatorial approach to symmetric motion planning2019

    • Author(s)
      田中 康平
    • Organizer
      代数, 論理, 幾何と情報科学研究集会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 位相的及び組合せ的手法を用いたモーション設計2018

    • Author(s)
      田中 康平
    • Organizer
      数理経済談話会&トポロジーセミナー(信州大学)
    • Related Report
      2018 Research-status Report
  • [Presentation] Topological complexity and L-S category for finite spaces2018

    • Author(s)
      Kohei Tanaka
    • Organizer
      Mapping Spaces in Algebraic Topology (Kyoto University)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Symmetric topological complexity and its combinatorial description2018

    • Author(s)
      田中 康平
    • Organizer
      ホモトピー沖縄(沖縄県青年会館)
    • Related Report
      2018 Research-status Report
  • [Presentation] Topological and combinatorial methods in motion planning problem2018

    • Author(s)
      田中 康平
    • Organizer
      日本数学会秋季総合分科会(岡山大学)
    • Related Report
      2018 Research-status Report
  • [Presentation] Combinatorial motion planning for finite spaces2017

    • Author(s)
      田中 康平
    • Organizer
      代数, 論理, 幾何と情報科学研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] 離散的オイラー積分と数え上げ問題への応用2017

    • Author(s)
      田中 康平
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] Topological complexity of finite spaces and its combinatorial description2017

    • Author(s)
      田中 康平
    • Organizer
      新居浜代数トポロジーセミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] Discrete Morse theory and homotopy theory of categories2017

    • Author(s)
      田中 康平
    • Organizer
      京都大学代数トポロジーセミナー
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi