• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deformation theory of submanifolds characterized by differential forms

Research Project

Project/Area Number 17K14187
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionMie University

Principal Investigator

Moriyama Takayuki  三重大学, 教養教育院, 准教授 (60532554)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords四元数構造 / ポワソン構造 / 複素接触多様体 / ツイスター空間 / 複素接触構造 / 幾何学 / 変形理論
Outline of Final Research Achievements

The space of certain Poisson structures is decided. We provide a splitting theorem of k-vector fields and vanishing of the cohomology in complex contact manifolds. We introduce quaternionic k-vector fields in quatenionic kahler manifolds and prove that such a k-vector field corresponds to a holomorphic k-vector field on the twistor space. Moreover, a quaternionic k-vector field which is a real vector field corresponds to a holomorphic k-vector field which is real with respect to the real structure on the twistor space.

Academic Significance and Societal Importance of the Research Achievements

4次元四元数ケーラー多様体(自己双対アインシュタイン多様体)は数学のみならず物理学的にも非常に重要な研究対象であると捉えられており、特に4次元球面はその最も基本的かつ重要な例である。本研究の対象であるポワソン構造は量子化の問題と深くかかわっている。また、本研究で用いられたツイスター空間による手法は高次元においても重要な研究手法であり、様々な分野への応用、関係性の発見が期待できる。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results)

  • [Journal Article] Some examples of global Poisson structures on S42019

    • Author(s)
      Moriyama, Takayuki; Nitta, Takashi
    • Journal Title

      Kodai Math. J

      Volume: 42 Pages: 223-246

    • NAID

      130007674787

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Splitting theorem for sheaves of holomorphic k -vectors on complex contact manifolds2018

    • Author(s)
      Takayuki Moriyama and Takashi Nitta
    • Journal Title

      International Journal of Mathematics

      Volume: 29 Pages: 1-21

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Some examples of global Poisson structures on $S^4$2018

    • Author(s)
      森山貴之、新田貴士
    • Organizer
      第65回幾何学シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] Some examples of global Poisson structures on $S^4$2018

    • Author(s)
      森山貴之、新田貴士
    • Organizer
      2018年度日本数学会幾何学分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] Splitting theorem for sheaves of holomorphic k-vectors on complex contact manifolds2018

    • Author(s)
      森山貴之、新田貴士
    • Organizer
      2018年度日本数学会幾何学分科会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi