• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of non-Kaehler open complex manifolds and 4-dimensional topology

Research Project

Project/Area Number 17K14193
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionHokkaido University (2021-2022)
Kyoto Sangyo University (2017-2020)

Principal Investigator

Kasuya Naohiko  北海道大学, 理学研究院, 准教授 (70757765)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords複素曲面 / 接触構造 / トポロジー / 複素構造 / 4次元多様体 / 強擬凹境界 / 開複素多様体 / 開複素曲面 / 楕円曲線 / 対数変換 / 4次元トポロジー / ケーラーでない複素曲面
Outline of Final Research Achievements

In this research program, I gave an affirmative answer to the problem "Is any closed co-oriented contact 3-manifold realizable as the boundary of a strongly pseudoconcave surface?" Moreover, I proved that a complex surface concavely filling the contact structure can be made Kaehler or non-Kaehler which ever you want. This is the main result that I obtained. Moreover, I showed that any two closed contact 3-manifolds can be connected by a complex cobordism, and such a cobordism can be taken to be Kaehler. In this case, however, the Kaehler structure is not compatible with the boundary contact structure, so the cobordism is not a Kaehler cobordism, in general. These results were summarized in a research paper written with Daniele Zuddas, which has been submitted a journal and under review now.

Academic Significance and Societal Importance of the Research Achievements

強擬凸複素曲面は複素幾何・接触トポロジーの両面から盛んに研究されており、その境界の接触構造には「Stein filliable, 特にtightである」という強い制約がかかることが知られている。本研究課題では当初の目標であった「任意の3次元閉接触多様体は強擬凹複素曲面の境界として実現可能か?」という問いを肯定的に解決し、さらに接触多様体を充填する複素曲面はケーラーにも非ケーラーにもとれることを証明した。この成果は、強擬凹曲面は強擬凸の場合と異なり、境界接触構造に関して柔軟性を持っていることを示しており、複素曲面および接触構造の研究における「強擬凹」という新たな方向の重要性を示唆している。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (11 results)

All 2022 2021 2020 2018 2017

All Journal Article (4 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (7 results) (of which Invited: 6 results)

  • [Journal Article] On the deformation of the exceptional unimodal singularities2021

    • Author(s)
      Naohiko Kasuya, Atsuhide Mori
    • Journal Title

      Journal of Singularities

      Volume: 23 Pages: 1-14

    • DOI

      10.5427/jsing.2021.23a

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] CR regular embeddings of $S^{4n-1}$ in $\mathbb{C}^{2n+1}$2020

    • Author(s)
      Naohiko Kasuya
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 148 Issue: 7 Pages: 3021-3024

    • DOI

      10.1090/proc/14962

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Non-Kähler complex structures on $R^4$, II2018

    • Author(s)
      Antonio Di Scala, Naohiko Kasuya, Daniele Zuddas
    • Journal Title

      Journal of Symplectic Geometry

      Volume: 16(3) Issue: 3 Pages: 631-644

    • DOI

      10.4310/jsg.2018.v16.n3.a2

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Non-Kahler complex structures on $R^4$, II2018

    • Author(s)
      Antonio J. Di Scala, Naohiko Kasuya, Daniele Zuddas
    • Journal Title

      Journal of Symplectic Geometry

      Volume: 16-3

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2022

    • Author(s)
      粕谷直彦
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      東大複素解析幾何セミナー
    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Invited
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      日本数学会2021年度秋季分科会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 強擬凹曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      多変数関数論冬セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Knots and links of complex tangents2018

    • Author(s)
      粕谷直彦
    • Organizer
      Intelligence of Low-dimensional Topology
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Non-Kahler complex structures on $R^4$2017

    • Author(s)
      Naohiko Kasuya
    • Organizer
      Topology of pseudoconvex domains and analysis of reproducing kernels
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi