• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Discretization of differential geometric structures of surfaces with singularities

Research Project

Project/Area Number 17K14197
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionHiroshima Institute of Technology

Principal Investigator

Naokawa Kosuke  広島工業大学, 情報学部, 准教授 (60740826)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords可展面 / 離散曲面 / メビウスの帯 / 特異点 / カスプ辺 / 交叉帽子 / 等長実現 / 折り紙 / 燕の尾 / カスプ状交叉帽子 / 離散化 / 曲線折り / 異性体 / 結び目 / コソフスキ計量 / 等長変形 / 幾何学 / 微分幾何学 / 離散微分幾何学
Outline of Final Research Achievements

The purpose of this research project is to clarify the differential geometrical properties of smooth surfaces with singularities, and to formulate and study the properties of their discrete objects. In particular, the following results are obtained;
(I)(1) constructions of discrete developable and geodesic Mobius strips with arbitrarily given knot types and twisting numbers, (2) the formulation and study of properties of singularities of cuspidal edge type and swallowtail type, appearing on discrete developable surfaces,
(II)(1) the problem of isometric realizations of a given Kossowski metric, (2) classifications of isomers of cuspidal edges up to congruence, and reserch on origami curved foldings, and (3) isometric realizations of cross cap singularities by formal power series.

Academic Significance and Societal Importance of the Research Achievements

近年,曲線や曲面の微分幾何学的な性質に着目し,その離散的対応物を定式化し研究する分野である「離散微分幾何学」の研究が盛んになりつつある.微分幾何学的に重要と考えられる性質に着目して離散化しているため,数値計算における単なる近似に比べ幾何構造を保つと考えられ,数学の枠を超えて建築やコンピュータグラフィックスを含む工学的,芸術的分野への応用も期待される.本研究では,可展面と特異点についての離散化を出発点として,離散曲面の研究と,その由来となる特異点をもつ曲面の微分幾何学的性質の研究の両面に対して,広く成果を得た.

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (34 results)

All 2024 2023 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (9 results) Journal Article (10 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 10 results,  Open Access: 6 results) Presentation (14 results) (of which Int'l Joint Research: 7 results,  Invited: 14 results) Remarks (1 results)

  • [Int'l Joint Research] TU Wien(オーストリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] TU-Wien(オーストリア)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] TU-Wien(オーストリア)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] TU-Wien(オーストリア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Politecnico di Torino(イタリア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] TU-Wien(オーストリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Politecnico di Torino(イタリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ウィーン工科大学(オーストリア)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ウィーン工科大学(オーストリア)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Symmetries of cross caps2023

    • Author(s)
      A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada
    • Journal Title

      Tohoku Mathematical Journal

      Volume: 75 Issue: 1 Pages: 131-141

    • DOI

      10.2748/tmj.20211203

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A generalization of Zakalyukin's lemma, and symmetries of surface singularities2022

    • Author(s)
      Honda Atsufumi、Naokawa Kosuke、Saji Kentaro、Umehara Masaaki、Yamada Kotaro
    • Journal Title

      Journal of Singularities

      Volume: 25 Pages: 299-324

    • DOI

      10.5427/jsing.2022.25m

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Symmetries of cross caps2022

    • Author(s)
      A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada
    • Journal Title

      Tohoku Mathematical Journal

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the existence of four or more curved foldings with common creases and crease patterns2021

    • Author(s)
      A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada
    • Journal Title

      Beitraege zur Algebra und Geometrie

      Volume: - Issue: 4 Pages: 723-761

    • DOI

      10.1007/s13366-021-00602-2

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Isometric deformations of wave fronts at non-degenerate singular points2020

    • Author(s)
      A. Honda, K. Naokawa, M. Umehara, K. Yamada
    • Journal Title

      Hiroshima Mathematical Journal

      Volume: 50 Issue: 3 Pages: 269-312

    • DOI

      10.32917/hmj/1607396490

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Duality on generalized cuspidal edges preserving singular set images and first fundamental forms2020

    • Author(s)
      Honda Atsufumi、Naokawa Kosuke、Saji Kentaro、Umehara Masaaki、Yamada Kotaro
    • Journal Title

      Journal of Singularities

      Volume: 22 Pages: 59-91

    • DOI

      10.5427/jsing.2020.22e

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cuspidal edges with the same first fundamental forms along a knot2020

    • Author(s)
      Honda Atsufumi、Naokawa Kosuke、Saji Kentaro、Umehara Masaaki、Yamada Kotaro
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 29 Issue: 07 Pages: 2050047-2050047

    • DOI

      10.1142/s0218216520500479

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Curved foldings with common creases and crease patterns2020

    • Author(s)
      Honda Atsufumi、Naokawa Kosuke、Saji Kentaro、Umehara Masaaki、Yamada Kotaro
    • Journal Title

      Advances in Applied Mathematics

      Volume: 121 Pages: 102083-102083

    • DOI

      10.1016/j.aam.2020.102083

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Isometric realization of cross caps as formal power series and its applications2019

    • Author(s)
      HONDA Atsufumi、NAOKAWA Kosuke、UMEHARA Masaaki、YAMADA Kotaro
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 48 Issue: 1 Pages: 1-44

    • DOI

      10.14492/hokmj/1550480642

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Isometric realizations of cross caps as formal power series and its applications2018

    • Author(s)
      A. Honda, K. Naokawa, M. Umehara, K. Yamada
    • Journal Title

      Hokkaido Math. J.

      Volume: to appear

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 可展面に現れるカスプ辺・燕の尾特異点の離散化2024

    • Author(s)
      直川耕祐
    • Organizer
      HIT-Math 2024 ミニワークショップ
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 離散可展面とその特異点について2023

    • Author(s)
      直川耕祐
    • Organizer
      RIMS研究集会「部分多様体と群作用の幾何学」
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Discrete developable surfaces and their singularities2022

    • Author(s)
      Kosuke Naokawa
    • Organizer
      Discrete Geometric Analysis and its Applications
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 折り紙の曲線折りについて2021

    • Author(s)
      直川耕祐
    • Organizer
      第1回マス・フォア・イノベーションセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Topologies and singularities of discrete developable surfaces2020

    • Author(s)
      Kosuke Naokawa
    • Organizer
      Workshop and School on Geometric Analysis and Discrete Geometry, KIAS
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Curved foldings with given creases and crease patterns2020

    • Author(s)
      Kosuke Naokawa
    • Organizer
      Geometric shape generation
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 可展面の離散化とその特異点について2019

    • Author(s)
      直川耕祐
    • Organizer
      Workshop on Submanifold theory in a wider sense
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 可展面の離散化とそのトポロジーおよび特異点について2019

    • Author(s)
      直川耕祐
    • Organizer
      広島幾何学研究集会 2019
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On discrete developable Mobius strips2019

    • Author(s)
      Kosuke Naokawa
    • Organizer
      九州大学トポロジーセミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Developable Mebius strips and their discretization II2018

    • Author(s)
      Kosuke Naokawa
    • Organizer
      Mini-Workshop on Geometry and Mathematical Science
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Developable Mebius strips and their discretization I2018

    • Author(s)
      Kosuke Naokawa
    • Organizer
      Mini-Workshop on Geometry and Mathematical Science
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Isometric deformations and realizations of surfaces with non-degenerate singularities2017

    • Author(s)
      K. Naokawa
    • Organizer
      International workshop on differential geometric aspects of integrable systems
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 波面の等長変形と実現問題について2017

    • Author(s)
      直川耕祐
    • Organizer
      第64回幾何学シンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Isometric deformations and realizations of surfaces with wave fronts2017

    • Author(s)
      K. Naokawa
    • Organizer
      The third Japanese-Spanish workshop on Differential Geometry
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 研究者データ

    • URL

      http://www.it-hiroshima.ac.jp/faculty/information/computer/teacher/kosuke_naokawa/

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi