• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Spectral analysis of the Dirac operator on symmetric spaces

Research Project

Project/Area Number 17K14208
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionNippon Medical School

Principal Investigator

Kaizuka Koichi  日本医科大学, 医学部, 講師 (30737549)

Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords対称空間 / ディラック作用素 / スペクトル / 表現論 / スペクトル解析 / 調和解析 / スピン表現
Outline of Final Research Achievements

The author studied continuous spectrum of the Dirac operator on symmetric spaces of noncompact type.He determined the structure of the continuous spectrum of the Dirac operator for several series of symmetric spaces (e.g. even multiplicity case, real special linear groups), and partially solved the subject.Moreover, under the even multiplicity condition, he proved the non-existence of complex resonances for the Dirac operator.On the other hand, he also constructed scattering theory for the joint eigenfunctions associated with principal series representations and that for the Laplace-Beltrami operator which describes the motion of a spinless quantum particle.

Academic Significance and Societal Importance of the Research Achievements

非コンパクトなスピン構造を持つ多様体上において,ディラック作用素が零固有値を持つか否か,スペクトルギャップを持つか否かは多様体の幾何学的性質に深く依存している.本研究で,いくつかの高ランクの対称空間上のディラック作用素の連続スペクトルを決定し,同じ対称空間でも性質が異なるスペクトルが生じることを示したことは,解析と幾何の両分野において興味深い具体例を比較的多く挙げることが出来たという一定の意義がある.また,対称空間上のいくつかの微分作用素に対してスペクトル散乱理論を構築することは,より広いクラスのリーマン多様体上のスペクトル・散乱理論を構築する際の足掛かりとなる意義があるる.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2019 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (4 results) (of which Invited: 4 results)

  • [Journal Article] Scattering theory for the Laplacian on symmetric spaces of noncompact type and its application to a conjecture of Strichartz2019

    • Author(s)
      Kaizuka Koichi
    • Journal Title

      Journal of Functional Analysis

      Volume: 276 Issue: 2 Pages: 329-379

    • DOI

      10.1016/j.jfa.2018.11.005

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 書評「谷島賢二:シュレディンガー方程式 I, II(朝倉数学体系 5, 6)」2018

    • Author(s)
      貝塚公一
    • Journal Title

      日本数学会「数学」

      Volume: 70

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A characterization of the $L^2$-range of the Poisson transfrom with real and singular spectral parameter on symmetric spaces of noncompact type2018

    • Author(s)
      Koichi Kaizuka
    • Journal Title

      Journal of Lie Theory

      Volume: 28

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] A characterization of the $L^2$-range of the Poisson transfrom with real and singular spectral parameter on symmetric spaces of noncompact type2017

    • Author(s)
      貝塚公一
    • Journal Title

      数理解析研究所講究禄「スペクトル・散乱理論とその周辺」

      Volume: 2045

    • Related Report
      2017 Research-status Report
    • Open Access
  • [Presentation] A characterization of the L2-range of the Poisson transform with real and singular spectral parameter on symmetric spaces2017

    • Author(s)
      貝塚 公一
    • Organizer
      微分方程式と幾何学
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] A characterization of the L2-range of the Poisson transform with real and singular spectral parameter on symmetric spaces of noncompact type2017

    • Author(s)
      貝塚 公一
    • Organizer
      The 15th Linear and Nonlinear Waves
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] A charactrization of the L2-range of the Poisson transform with real and singular spectral parameter on symmetric spaces of noncompact type2017

    • Author(s)
      貝塚 公一
    • Organizer
      第149回神楽坂解析セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Stationary scattering theory on symmetric spaces of noncompact type2017

    • Author(s)
      貝塚 公一
    • Organizer
      Workshop on linear and nonlinear dispersive equations and related topics
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi