• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of density functions and sensitivities concerning stochastic differential equations

Research Project

Project/Area Number 17K14209
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionShibaura Institute of Technology

Principal Investigator

Nakatsu Tomonori  芝浦工業大学, システム理工学部, 助教 (50732898)

Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords確率微分方程式 / 離散・連続時間最大値 / 確率密度関数 / リスク計算 / モンテカルロシミュレーション / グリークス / 確率論
Outline of Final Research Achievements

Researches of probability density functions and sensitivities concerning solutions of stochastic differential equations have been done. Regarding the former, the author obtained lower and upper bounds of the density function of discrete time maximum of the solution. The author then proved that the density function of the discrete time maximum converges to that of the continuous time maximum of the solution. Finally, the author proved the positivity of the density function of the continuous time maximum, and a relationship between the density functions of the continuous time maximum and the solution itself.The paper on these results has been accepted for publication in an international journal.
Regarding the latter, the author obtained a formula to compute risks of financial products depending on maxima of the solution of stochastic differential equations with coefficients dependent on the time and space parameter. Some numerical techniques applied to the formula also have been derived.

Academic Significance and Societal Importance of the Research Achievements

本研究では、従来はあまり十分に研究がなされていなかったが、応用上極めて重要である確率微分方程式の解の最大値に関する、理論・応用研究を行った。本研究は複雑な金融商品のリスク管理に応用可能な研究である。2008年に発生したリーマンショックが複雑な金融商品のリスクの未熟な扱いによって引き起こされたことを鑑みると、学術的(かつ客観的)立場から金融実務に繋がる研究を行えたことは、金融システムの安定への寄与という点で意義があると考えている。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (15 results)

All 2019 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (12 results) (of which Int'l Joint Research: 5 results,  Invited: 5 results)

  • [Journal Article] Some Properties of Density Functions on Maxima of Solutions to One-Dimensional Stochastic Differential Equations2019

    • Author(s)
      Tomonori Nakatsu
    • Journal Title

      Journal of Theoretical Probability

      Volume: 印刷中 Issue: 4 Pages: 1746-1779

    • DOI

      10.1007/s10959-019-00885-1

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Volatility risk structure for options depending on extrema2017

    • Author(s)
      Tomonori Nakatsu
    • Journal Title

      Journal of Computational Finance

      Volume: 21(3) Issue: 3 Pages: 105-122

    • DOI

      10.21314/jcf.2017.334

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] An Integration by Parts Type Formula for Stopping Times and its Application2017

    • Author(s)
      Tomonori Nakatsu
    • Journal Title

      Methodology and Computing in Applied Probability

      Volume: 19(3) Issue: 3 Pages: 751-773

    • DOI

      10.1007/s11009-016-9512-9

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Integration by parts formula and probability density function2019

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      The 3rd UOG-SIT Workshop in Pure/Applied Mathematics and Computer Science
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Integration by parts formulas for maxima of diffusion processes and applications2019

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      Okayama Workshop on Stochastic Analysis 2019
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Integration by parts formulas for maxima of diffusion processes and applications2018

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      金融工学・数理計量ファイナンスの諸問題 2018
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 最大値に依存する金融商品のリスク計算について2018

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      日本応用数理学会2018年度年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Some Properties of Density Functions on Maxima of One-Dimensional Diffusion Processes2018

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Properties of density functions on maxima of one-dimensional diffusion processes2018

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      Workshop on Local Limits for Galton-Watson Trees
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stochastic analysis in finance and related topics2018

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      The 2nd SIT-UOG workshop on pure/applied mathematics and computer science
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Some properties of density functions on maxima of solutions to one-dimensional stochastic differential equations2018

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      計量経済学ワークショップセミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Some properties of density functions on maxima of solutions to one-dimensional stochastic differential equations2017

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      2017年度確率論シンポジウム
    • Related Report
      2017 Research-status Report
  • [Presentation] Some properties of density functions on maxima of one-dimensional diffusion processes2017

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      日本応用数理学会2017年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] Some properties of density functions on maxima of one-dimensional diffusion processes2017

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      応用確率論 in 静岡
    • Related Report
      2017 Research-status Report
  • [Presentation] Some properties of density functions on maxima of solutions to one-dimensional stochastic differential equations2017

    • Author(s)
      Tomonori Nakatsu
    • Organizer
      International Conference on Financial Risks and Uncertainties 2017
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi