• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Discrete and Ultradiscrete integrable systems in terms of the theory of number theoretic dynamical systems

Research Project

Project/Area Number 17K14211
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionKansai University

Principal Investigator

KANKI Masataka  関西大学, システム理工学部, 准教授 (20755897)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords可積分系 / 漸化式 / 超離散系 / 力学系 / 離散力学系 / 離散可積分系 / 代数的エントロピー / 離散KdV方程式 / 格子力学系 / 可積分性判定 / 特異点閉じ込め / 戸田格子 / ローラン現象 / coprimeness / 数理物理 / 関数方程式論
Outline of Final Research Achievements

The aim of this research is to rigorously re-define the integrability of discrete dynamical systems through the study of the algebraic and the number theoretic aspects of difference equations.
An elaboration on the integrability criteria helps us to define the "integrability" of multi-dimensional lattice systems and the systems defined over a number theoretic field. We have defined several new types of difference equations, which are considered to be "partially" integrable in terms of our integrability criterion called the "co-primeness" condition.
We expect that this study leads us to a novel perspective in the field of integrable systems and mathematical physics.

Academic Significance and Societal Importance of the Research Achievements

可積分系の研究には長い歴史があるが、離散系における可積分性についての厳密な取り扱いは発展途上である。本研究はこのテーマについて、従来の方程式を拡張した系に適応できる新しい可積分性判定基準として「互いに素条件」を導入した。
またこれらの基準の意味するところを、既知の判定基準と比較検討することで一見単純に思えるが難しい漸化式の世界の複雑さを解き明かすための準備となる研究を行うことができた。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (14 results)

All 2020 2019 2018 2017

All Journal Article (6 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (8 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] 可積分性判定2019

    • Author(s)
      神吉雅崇
    • Journal Title

      数理科学

      Volume: 674

    • Related Report
      2019 Research-status Report
  • [Journal Article] 多次元格子上の擬似可積分系2018

    • Author(s)
      神吉雅崇, 時弘哲治, 間瀬崇史
    • Journal Title

      数理解析研究所講究録

      Volume: 2071 Pages: 17-39

    • Related Report
      2018 Research-status Report
  • [Journal Article] On the Coprimeness Property of Discrete Systems without the Irreducibility Condition2018

    • Author(s)
      Kanki Masataka、Mase Takafumi、Tokihiro Tetsuji
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 14 Pages: 065-065

    • DOI

      10.3842/sigma.2018.065

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Toda type equations over multi-dimensional lattices2018

    • Author(s)
      Kamiya Ryo、Kanki Masataka、Mase Takafumi、Okubo Naoto、Tokihiro Tetsuji
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 51 Issue: 36 Pages: 364002-364002

    • DOI

      10.1088/1751-8121/aad375

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Nonlinear forms of coprimeness preserving extensions to the Somos-4 recurrence and the two-dimensional Toda lattice equation?investigation into their extended Laurent properties2018

    • Author(s)
      Kamiya Ryo、Kanki Masataka、Mase Takafumi、Tokihiro Tetsuji
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 51 Issue: 35 Pages: 355202-355202

    • DOI

      10.1088/1751-8121/aad074

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A two-dimensional lattice equation as an extension of the Heideman-Hogan recurrence2018

    • Author(s)
      Ryo Kamiya, Masataka Kanki, Takafumi Mase, and Tetsuji Tokihiro
    • Journal Title

      J. Phys. A: Math. Theor.

      Volume: 51 Issue: 12 Pages: 125203-125203

    • DOI

      10.1088/1751-8121/aaad47

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] ある多項間漸化式の代数的エントロピーについて2020

    • Author(s)
      神吉雅崇
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Coprimenesspreserving extensions to discrete integrable systems2019

    • Author(s)
      Masataka Kanki
    • Organizer
      9th International Congress on Industrial and Applied Mathematics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Coprimeness property of the Toda type equations over multi-dimensional lattices2018

    • Author(s)
      Masataka Kanki
    • Organizer
      Symmetry and Integrability of Difference Equations 13 in Fukuoka
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 離散可積分性判定と互いに素条件2018

    • Author(s)
      神吉雅崇
    • Organizer
      可積分系理論から見える数理構造とその応用
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 漸化式と互いに素条件2018

    • Author(s)
      神吉雅崇
    • Organizer
      2018年度函数方程式論サマーセミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] 疑似可積分性をもつ離散方程式2017

    • Author(s)
      神谷 亮、神吉 雅崇、時弘 哲治、間瀬 崇史
    • Organizer
      日本応用数理学会年会
    • Related Report
      2017 Research-status Report
  • [Presentation] 離散力学系の可積分性判定について-線形化可能系を中心に-2017

    • Author(s)
      神吉 雅崇
    • Organizer
      数理科学の拡がり:可積分系・数理医学
    • Related Report
      2017 Research-status Report
  • [Presentation] 離散可積分系の判定手法について2017

    • Author(s)
      神吉 雅崇
    • Organizer
      函数方程式論サマーセミナー
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi