• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Differential equations satisfied by modular forms

Research Project

Project/Area Number 17K14213
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionNiihama National College of Technology

Principal Investigator

Matsuda Kazuhide  新居浜工業高等専門学校, 数理科, 准教授 (20550106)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Keywordsモジュラー形式 / テータ関数 / 有理指標 / Ramanujan の微分方程式 / cubic theta 関数 / Ramanujan の方程式 / 微分体 / Jacobi の微分公式
Outline of Final Research Achievements

We concretely construct examples of differential equations satisfied by modular forms. In particular, we treat modular forms of levels 3-6. We obtain applications to quadratic forms. Moreover, we discover high level versions of Jacobi's derivative formula and Jacobi's quartic identity.

Academic Significance and Societal Importance of the Research Achievements

モジュラー形式が満たす微分方程式は、これまで可積分系および整数論の両分野から研究されてきた。本研究により新たな例が得られたことにより、両分野の新たな発展が期待できる。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2020 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results)

  • [Journal Article] Differential equations involving cubic theta functions and Eisenstein series.2020

    • Author(s)
      Matsuda, Kazuhide
    • Journal Title

      Osaka J. Math.

      Volume: 57 Pages: 521-542

    • NAID

      120006871530

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Note on a theorem of Farkas and Kra2020

    • Author(s)
      Matsuda Kazuhide
    • Journal Title

      The Ramanujan Journal

      Volume: 53 Issue: 2 Pages: 319-356

    • DOI

      10.1007/s11139-020-00301-x

    • Related Report
      2020 Annual Research Report
  • [Journal Article] On certain quaternary quadratic forms.2018

    • Author(s)
      K. Matsuda
    • Journal Title

      Integers

      Volume: 18

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Analogues of Jacobi's derivative formula II.2017

    • Author(s)
      Kazuhide Matsuda
    • Journal Title

      Ramanujan J.

      Volume: 44 Issue: 1 Pages: 37-62

    • DOI

      10.1007/s11139-016-9803-3

    • Related Report
      2017 Research-status Report
    • Peer Reviewed

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi