• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New constructions of designs, graphs and codes over finite fields based on finite geometry and algebraic methods

Research Project

Project/Area Number 17K14236
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionKumamoto University

Principal Investigator

Momihara Koji  熊本大学, 大学院先端科学研究部(理), 准教授 (70613305)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords差集合 / 強正則グラフ / Griesmer符号 / アダマール行列 / アソシエーションスキーム / 有限幾何 / ガウス周期 / アダマール差集合 / ペイリー差集合族 / アダマール差集合族 / 歪対称アダマール差集合 / 対称アダマール差集合 / 歪アダマール差集合 / 差集合族 / デザイン / グラフ / 符号
Outline of Final Research Achievements

In past researches, some constructions for combinatorial objects such as designs, graphs and codes have been presented based on finite geometry of small dimension and cyclotomy of small index over finite fields. However, because of the difficulty of computations of the size of hyperplane sections and Gauss sums, the classes of such objects found before has been limited. In this research, we found new approaches to treat geometric objects of large dimension and compute Gauss sums of large index using a combination of actions of finite groups and field extensions. In particular, we succeeded to give new families of skew Hadamard difference sets inequivalent to known ones, skew Hadamard difference families with new parameters, Hadamard matrices of new order, and new strongly regular graphs based on three-valued Gauss periods. Thus, we generalized known construction theories for designs, graphs and codes over finite fields.

Academic Significance and Societal Importance of the Research Achievements

デザイン・グラフ・符号はそれぞれ, 統計学・ネットワーク・情報通信に応用され, 我々の日常生活の背後にある重要な離散構造である. 一方, その存在性に関しては, 未解決な部分が多く組合せ論における重要な研究課題である. 特に, 本研究は, 有限体上の差集合・強正則グラフ・Griesmer符号と呼ばれるデザイン・グラフ・符号について, 有限幾何・整数論・群論的手法を組み合わせた新手法を考案し, 多くのパラメータで存在性が未知であった上記組合せ構造の存在性の解明を行った.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (29 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (6 results) Journal Article (8 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 7 results) Presentation (12 results) (of which Int'l Joint Research: 4 results,  Invited: 2 results) Remarks (3 results)

  • [Int'l Joint Research] National University of Singapore(シンガポール)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] University of Delaware(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] University of Delaware/Department of Mathematical Sciences(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] National University of Singapore/Department of Mathematics(シンガポール)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] The University of Western Australia(オーストラリア)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] University of Delaware(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Generalized constructions of Menon-Hadamard difference sets2020

    • Author(s)
      K. Momihara, Q. Xiang
    • Journal Title

      Finite Fields and Their Applications

      Volume: 61 Pages: 101601-101601

    • DOI

      10.1016/j.ffa.2019.101601

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] New constructions of Hadamard matrices2020

    • Author(s)
      K. H. Leung, K. Momihara
    • Journal Title

      Journal of Combinatorial Theory, Series A

      Volume: 171 Pages: 105160-105160

    • DOI

      10.1016/j.jcta.2019.105160

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A large family of strongly regular Cayley graphs2020

    • Author(s)
      籾原幸二
    • Journal Title

      第36 回代数的組合せ論シンポジウム報告集

      Volume: 36 Pages: 64-76

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Constructions of skew Hadamard difference families2019

    • Author(s)
      Koji Momihara, Qing Xiang
    • Journal Title

      European Journal of Combinatorics

      Volume: 76 Pages: 73-81

    • DOI

      10.1016/j.ejc.2018.09.007

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Cyclotomy, difference sets, sequences with low correlation, strongly regular graphs, and related geometric substructures2019

    • Author(s)
      Koji Momihara, Qi Wang, Qing Xiang
    • Journal Title

      Combinatorics and Finite Fields. Difference Sets, Polynomials, Pseudorandomness and Applications

      Volume: 印刷中 Pages: 173-198

    • DOI

      10.1515/9783110642094-009

    • ISBN
      9783110642094
    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A new infinite family of hemisystems of the Hermitian surfaces2018

    • Author(s)
      John Bamberg, Melissa Lee, Koji Momihara, Qing Xiang
    • Journal Title

      Combinatorica

      Volume: 38 Pages: 44-66

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Strongly regular Cayley graphs from partitions of subdifference sets of the Singer difference sets2018

    • Author(s)
      Koji Momihara, Qing Xiang
    • Journal Title

      Finite Fields and Their Applications

      Volume: 50 Pages: 222-250

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Construction of strongly regular Cayley graphs based on three-valued Gauss periods2018

    • Author(s)
      Koji Momihara
    • Journal Title

      European Journal of Combinatorics

      Volume: 70 Pages: 232-250

    • NAID

      120006861181

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] A big family of strongly regular graphs from three-valued Gauss periods2019

    • Author(s)
      籾原幸二
    • Organizer
      第36回代数的組合せ論シンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] A recursion on skew Hadamard difference sets2019

    • Author(s)
      籾原幸二
    • Organizer
      研究集会「実験計画法と符号および関連する組合せ構造2019」
    • Related Report
      2019 Annual Research Report
  • [Presentation] A large family of strongly regular Cayley graphs from three-valued Gauss periods2019

    • Author(s)
      Koji Momihara
    • Organizer
      Finite Geometry and Extremal Combinatorics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Skew Hadamard 行列の存在性に関するG. Szekeres の主張の修正について2018

    • Author(s)
      籾原幸二
    • Organizer
      研究集会「離散数学とその応用研究集会2018」
    • Related Report
      2018 Research-status Report
  • [Presentation] Skew Hadamard 行列の存在性に関するG. Szekeres の主張の修正について2018

    • Author(s)
      籾原幸二
    • Organizer
      研究集会「実験計画法ならびに情報数理と 関連する組合せ構造2018」
    • Related Report
      2018 Research-status Report
  • [Presentation] Transformation of Hadamard matrices into regular or almost regular Hadamard matrices2018

    • Author(s)
      Koji Momihara
    • Organizer
      Workshop on difference sets at Zhejiang University
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] On Hadamard matrices with maximum excess2018

    • Author(s)
      Koji Momihara
    • Organizer
      Hadamard Matrices and Their Apllications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Switching for Hadamard Matrices -A new approach to the excess problem-2018

    • Author(s)
      Koji Momihara
    • Organizer
      The 5th Taiwan-Japan Conference on Combinatorics and its Applications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Three-valued Gauss periods and related strongly regular Cayley graphs2017

    • Author(s)
      Koji Momihara
    • Organizer
      Hakata Workshop; Summer Meeting 2017
    • Related Report
      2017 Research-status Report
  • [Presentation] Strongly regular Cayley graphs from three-valued Gauss periods2017

    • Author(s)
      Koji Momihara
    • Organizer
      Japanese Conference on Combinatorics and its Applications
    • Related Report
      2017 Research-status Report
  • [Presentation] On regular or biregular Hadamard matrices2017

    • Author(s)
      Koji Momihara
    • Organizer
      研究集会「実験計画法と符号および関連する組合せ構造」
    • Related Report
      2017 Research-status Report
  • [Presentation] Construction of strongly regular Cayley graphs based on three-valued Gauss periods2017

    • Author(s)
      Koji Momihara
    • Organizer
      RIMS研究集会「代数的組合せ論および有限群・頂点作用素代数とその表現の研究」
    • Related Report
      2017 Research-status Report
  • [Remarks] Homepage of Koji Momihara

    • URL

      https://www.educ.kumamoto-u.ac.jp/~momihara/

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/7000016996/

    • Related Report
      2018 Research-status Report
  • [Remarks] Webpage of Koji Momihara

    • URL

      http://www.educ.kumamoto-u.ac.jp/~momihara/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-02-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi