Project/Area Number |
17K14498
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Polymer chemistry
|
Research Institution | Sagami Chemical Research Institute |
Principal Investigator |
Mikami Koichiro 公益財団法人相模中央化学研究所, その他部局等, 研究員、博士研究員 (40633574)
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | π-conjugation / thiophene / polycondensation / acene / ladder polymer / アセン / 共役系 / 高分子 / トランジスタ / ラダー / 共役 / 半導体 / チオフェン / 太陽電池 / π-電子 / グラフェン / 有機半導体 |
Outline of Final Research Achievements |
Herein, we report the synthesis of soluble, air-stable fully conjugated ladder polymers incorporating a BTBT structure as a repeating unit. The ladder polymers were synthesized through a simple process: A Migita-Kosugi-Stille polycondensation, followed by an intramolecular oxidative annulation (Scholl reaction). Absorption and fluorescence spectrometric analyses, as well as theoretical analysis and model reaction revealed that the intramolecular Scholl reaction proceeded efficiently. Electrochemical studies combined with theoretical molecular orbital analysis indicated that the resultant ladder polymers are stable under ambient conditions, because the drastic ascension of the highest-occupied molecular orbital (HOMO) level was suppressed even after ladderization by the Scholl reaction. Furthermore, the bottom-gate, top-contact organic thin-film devices that were fabricated from these ladder polymers operated as solution-processable p-type transistors.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、グラフェンやグランフェンナノリボン、オリゴアセン/ヘテロアセン類などの二次元状に π-電子が広がった共役系高分子が注目されている。本研究では側鎖に長鎖アルコキシ基を導入することで有機溶媒への溶解性を高くした縮環型ポリヘテロアセン類を合成した。有機溶媒へ可溶となったことで有機薄膜トランジスタへ応用することができるようになった。今後は本手法で得られるポリマーの大量合成法を確立し、有機EL材料などの実デバイスへの応用が期待される。
|