Density Form for Electronic Transitions: Applications to Molecular Design for Electroluminescent Materials
Project/Area Number |
17K14529
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Organic and hybrid materials
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 振電相互作用 / 内部転換 / スピン軌道相互作用 / 項間交差 / 無輻射遷移 / 遷移双極子モーメント / 輻射遷移 / 密度形式の電子遷移理論 / 有機EL |
Outline of Final Research Achievements |
We proposed a new concept called spin-orbit coupling density to visually understand spin-orbit coupling. By visualizing spin-orbit coupling density, we can intuitively understand the origin of intersystem crossing in organic molecules. We applied the method to acetone, naphthalene, and benzophenone and successfully explained the reason why benzophenone shows fast intersystem crossing out of the three molecules from a view point of spin-orbit coupling density. Spin-orbit coupling density of benzophenone was symmetrically distributed around its carbonyl group, leading to non-zero spin-orbit coupling. In addition, we applied the method to 1-bromonaphthalene and 1-iodonaphthalene and explained the origin of heavy-atom effect in spin-orbit coupling. Finally, structure-property relationship in intersystem crossing of electroluminescent materials was elucidated from the view point of spin-orbit coupling density.
|
Academic Significance and Societal Importance of the Research Achievements |
遷移双極子モーメントや振電相互作用、スピン軌道相互作用は輻射遷移(蛍光、りん光)ならびに無輻射遷移(内部転換、項間交差、電子移動)の速度と関係する。そのため、その基礎的な理解は有機材料の発光効率、電荷輸送特性、励起子輸送特性を理解する上で重要である。 本研究によって、輻射・無輻射遷移の起源となるあらゆる電子遷移をすべて視覚化して理解できるようになった。このことは、分子が示す輻射・無輻射遷移における構造活性相関を、複雑な数式を使わずに直感的に理解できるようになったことを意味する。分子の諸性質における構造活性相関を直感的に理解し、分子設計に活用するための手段として、本手法は有用である。
|
Report
(3 results)
Research Products
(8 results)