Deformation and fracture processes of crystalline polymers based on molecular theory
Project/Area Number |
17K14534
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Polymer/Textile materials
|
Research Institution | The University of Tokyo |
Principal Investigator |
Higuchi Yuji 東京大学, 物性研究所, 助教 (30613260)
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 結晶性高分子 / 変形 / 破壊 / 粗視化分子動力学法 / 大規模計算 / 座屈 / 断片化 / 高分子構造・物性 |
Outline of Final Research Achievements |
Deformation and fracture processes of the lamellar structure in crystalline polymers were studied based on molecular theory. The influence of molecular structures such as tie chains and entanglements on the stress transmission against the stretching was revealed by coarse-grained molecular dynamics simulation. Furthermore, my simulator has been developed to accelerate the simulation speed and enlarge the simulation size. Then, by performing the large-scale stretching simulation, buckling and fragmentation of crystalline layers, and void generation and growth in the fracture process were successfully elucidated. Finally, thermal properties of melting and glass transition of crystalline polymers were successfully measured, indicating the development of this study in the future.
|
Academic Significance and Societal Importance of the Research Achievements |
分子スケールにおける結晶性高分子の変形・破壊プロセスは実験では直接観察が困難であり、これまでのシミュレーションによる研究では実際の材料の機械的特性の再現すらできていなかった。これに対して本研究では、結晶性高分子の基本構造であるラメラ構造の作成と機械的特性を再現し、応力伝播のメカニズムや空孔の生成・成長プロセスの解明に成功した。分子スケールの構造と応力の関係性を解明することは、機械的特性の高い材料設計に役立つと考えられ、省資源・安全性への貢献が期待される。
|
Report
(3 results)
Research Products
(13 results)