• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Deep Glial Neural Network and thier Applications to Signal Processing

Research Project

Project/Area Number 17K14687
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Communication/Network engineering
Research InstitutionSuzuka National College of Technology (2018-2019)
Anan National College of Technology (2017)

Principal Investigator

Ikuta Chihiro  鈴鹿工業高等専門学校, その他部局等, 講師 (70757319)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsニューラルネットワーク / グリア細胞 / 深層学習 / パターン分類 / グリア / 人工グリアニューラルネットワーク / 畳み込みニューラルネットワーク / ドロップアウト / 機械学習 / ノイズ
Outline of Final Research Achievements

In this study, novel artificial glial neural networks that include features of glial cell are developed. The glial cell had been considered to support cell of neuron. Recently, researchers discovered that the glial cell transmits signal by using various important ions. Based on these researches, the artificial glial neural network includes these new features of glial cell such as a calcium wave by glial cell and glial cell working to a synapse plasticity. In one of proposed model based on glial cell working to synaptic plasticity, the glial cell makes neuron clusters and decides a dropout ratio in each neuron cluster. By this work, the influence of proposed glial dropout is better than the influence of original dropout for training of the neural network. The proposed deep glial neural networks compared with existing deep neural network, and this study confirmed that the proposed model has a high ability of the training and generalization capability.

Academic Significance and Societal Importance of the Research Achievements

脳内に存在するグリア細胞に着目し人工ディープニューラルネットワークに応用する研究である.これまで,脳の高次情報処理はニューロンによるものと考えられてきたが本研究を通じてグリア細胞の働きの重要性がより認知され新たな研究の方向性を示すことができたと考えている.また,近年急速に導入が進んでいる人工知能の代表であるディープニューラルネットワークにグリア細胞の特徴を組み込むことによる性能向上を確認することができた.これは,今後のディープニューラルネットワークの発展にとって新たな方向性となると期待できる.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 2018 2017

All Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Presentation] 群知能を用いたニューラルネットワークの最適化2019

    • Author(s)
      中村拓海,吉田元輝,生田智敬
    • Organizer
      電子情報通信学会非線形問題研究会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 並列計算を行う粒子群最適化アルゴリズムの提案2019

    • Author(s)
      佐伯逸人,多湖悠希,生田智敬
    • Organizer
      電子情報通信学会非線形問題研究会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Convolutional Neural Network with Glia Dropout2019

    • Author(s)
      Chihiro Ikuta, Isao Goto
    • Organizer
      IEEE Workshop on Nonlinear Circuit Networks
    • Related Report
      2019 Annual Research Report
  • [Presentation] Improvement of Feed Forward Neural Network by Synchronization Pulse2018

    • Author(s)
      Chihiro Ikuta
    • Organizer
      International Symposium on Nonlinear Theory and its Applications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Artificial Neuron-Glia Network2017

    • Author(s)
      Chihiro Ikuta
    • Organizer
      International Electronics Symposium
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi