Study on Reduction of Reentry Blackout by Surface Catalysis Effect
Project/Area Number |
17K14871
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Aerospace engineering
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 惑星大気再突入 / 通信ブラックアウト低減化技術 / 表面触媒性 / 空力加熱 / プラズマ中の電磁波伝播 / アーク加熱風洞 / 通信ブラックアウト低減化 / 表面触媒効果 / 通信ブラックアウト / プラズマ流 |
Outline of Final Research Achievements |
The radio frequency (RF) blackout for telecommunications between a reentry vehicle and a ground station hinders the accurate prediction of landing sites and increases the recovery cost. A mitigation method of RF blackout has been demanded. In this study, I proposed and demonstrated the new mitigation method using the surface catalysis effects with numerical simulation approach and wind tunnel experiments. The communication situation in reentry plasma was experimentally reproduced by 1 MW arc-heated wind tunnel, which generates high-temperature flows on the ground. Comparative tests were performed by two test models with high and low catalysis material of surfaces. The results indicated that the test model having high catalysis improves the communication situation, that is, mitigation of RF blackout. In addition, the mechanism to mitigating the RF blackout was clarified by the use of numerical analysis.
|
Academic Significance and Societal Importance of the Research Achievements |
宇宙開発利用や小型衛星・超小型衛星の近年の進展から、宇宙から地上に資料などを持ち帰る需要や機会は増大していくと期待される。その際において地球大気再突入は避けて通れない過程である。再突入時において宇宙機は高速・高温の極限的環境に置かれ、強い空力加熱や空力不安定など様々な問題が生じる。通信ブラックアウトもその1つであり、高精度着地点予測の妨げになるとともに回収コストの増大を招く。本研究ではこの問題を緩和するために新しいブラックアウト低減化技術を提案実証し、メカニズム解明を行った。本成果はブラックアウト低減化だけでなくスピンオフとして表面触媒によるプラズマ制御技術につながることも期待される。
|
Report
(4 results)
Research Products
(26 results)