• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of innovative method for equation inference towards derivation of whole new turbulence model for reproducing buffet phenomena

Research Project

Project/Area Number 17K14880
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Aerospace engineering
Research InstitutionJapan Aerospace EXploration Agency

Principal Investigator

Kanamori Masashi  国立研究開発法人宇宙航空研究開発機構, 航空技術部門, 主任研究開発員 (50770872)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywords数式探査 / 微分方程式 / 遺伝的プログラミング / 流体力学 / 乱流
Outline of Final Research Achievements

Reproduction or modeling of the buffet phenomena is one of the urgent issues to design safer aircraft at lower cost. It is, however, quite difficult because of the complex flowfield including separations of flow, which cannot be simulated appropriately with conventional turbulence models. One therefore has to use higher fidelity methods like DNS, LES or DES, which often suffer from severe computational cost. In this research, so-called equation inference technique is developed in order to distill the data from high fidelity methods into a new turbulence model for the flowfield involved with buffet phenomena. The result from the equation inference technique shows quantitatively good agreements in the lift coefficient of aircraft under low-speed buffet condition. This result also shows the possibility of the equation inference technique for customizing the turbulence model for any complex flowfield.

Academic Significance and Societal Importance of the Research Achievements

本研究は,剥離を伴う乱流現象という,従来の乱流モデルでの再現が困難な現象に特化して方程式探査アルゴリズムの有効性を検証してきた.しかし,本アルゴリズムはあらゆるデータに対して適用することが可能であり,従ってどの科学技術分野にでも応用することが可能である.昨今,データから有益な情報やモデルを抽出する,いわゆるデータ駆動科学が全盛期を迎えているが,本アルゴリズムはデータ駆動科学の一つとして,今後様々な対象に用いられることが期待される.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (3 results)

All 2019 2018

All Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Presentation] Distilling Model Equation from Numerical and Experimental Data Using Equation Inference Algorithm2019

    • Author(s)
      Masashi Kanamori, Akiko Hidaka and Shinji Nagai
    • Organizer
      AIAA Scitech 2019 Forum
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] System Identification on 2D Transonic Buffet2019

    • Author(s)
      Sansica, A. Loiseau, J.-Ch, Kanamori, M. Robinet, J.-Ch and Hashimoto, A.
    • Organizer
      54th 3AF International Conference on Applied Aerodynamics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 方程式探査アルゴリズムを用いた再突入カプセルのピッチ運動に関するモデル方程式の導出2018

    • Author(s)
      金森正史, 日高亜希子, 永井伸治
    • Organizer
      第50回流体力学講演会/第36回航空宇宙数値シミュレーション技術シンポジウム
    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi