• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Computational motor control model for muscle synergy modulation

Research Project

Project/Area Number 17K14933
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Neurophysiology / General neuroscience
Research InstitutionTokyo Institute of Technology

Principal Investigator

Kambara Hiroyuki  東京工業大学, 科学技術創成研究院, 助教 (50451993)

Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords運動学習 / 筋シナジー / 計算論的神経科学
Outline of Final Research Achievements

Muscle synergy is one of the neural mechanism that makes complex movement easier for brain to control. Although recent studies showed that activity pattern of multiple muscles can be reconstructed by linear sum of fewer number of synergy components, it is still unknown how our brain modulate muscle synergies to control our body efficiently in various situations. In this study, we made a hypothesis that muscle synergies are modulated by reinforcement algorithm, and propose a motor control model which can learn muscle synergies, their activation level, and internal forward model of musculoskeletal system. By applying our model to motor control task so called virtual surgery task, we verified that our can reproduce qualitative results of the past virtual surgery task experiments. It is suggested that the reason that modulation of muscle synergies takes more time than that of synergy activation level may originated from the difference of learning algorithm adopted by our brain.

Academic Significance and Societal Importance of the Research Achievements

筋シナジーの学習は、その活動レベルの学習に比べて時間がかかることが過去の研究によって観測されてきた。この運動学習に関する特徴を説明する仮説として、両者の学習率の違いが提案されてきた。一方、本研究により、両者の学習速度の違いは学習率の違いによってではなく、学習アルゴリズムそのものが異なる可能性が示唆され、適切な運動を生成するための運動学習に関する脳内情報 処理のメカニズムの解明に役立つと考えられる。また、筋シナジーは運動を作り出す筋活動の基底をなす要素であり、本研究で提案した運動学習モデルに基づいた効果的な運動トレーニング方法を開発につながることが期待できる。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (9 results)

All 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 4 results,  Open Access: 4 results) Presentation (4 results) (of which Int'l Joint Research: 1 results)

  • [Int'l Joint Research] カリフォルニア大学サンディエゴ校, SCCN 研究所(米国)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Reduced Effort Does Not Imply Slacking: Responsiveness to Error Increases With Robotic Assistance2018

    • Author(s)
      Takagi Atsushi、Kambara Hiroyuki、Koike Yasuharu
    • Journal Title

      IEEE Transactions on Neural Systems and Rehabilitation Engineering

      Volume: 26 Issue: 7 Pages: 1363-1370

    • DOI

      10.1109/tnsre.2018.2836341

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Control of a Robot Arm using decoded Joint angles from Electrocorticograms in Primate2018

    • Author(s)
      Duk Shin, Hiroyuki Kambara, Natsue Yoshimura, Yasuharu Koike
    • Journal Title

      Computational Intelligence and Neuroscience

      Volume: 2018 Pages: 1-10

    • DOI

      10.1155/2018/2580165

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Decoding of Ankle Flexion and Extension from Cortical Current Sources Estimated from Non-invasive Brain Activity Recording Methods2018

    • Author(s)
      Mejia Tobar Alejandra、Hyoudou Rikiya、Kita Kahori、Nakamura Tatsuhiro、Kambara Hiroyuki、Ogata Yousuke、Hanakawa Takashi、Koike Yasuharu、Yoshimura Natsue
    • Journal Title

      Frontiers in Neuroscience

      Volume: 11 Pages: 1-12

    • DOI

      10.3389/fnins.2017.00733

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Decoding of finger movement in humans using synergy of EEG cortical current signals2017

    • Author(s)
      Yoshimura N., Tsuda H., Kawase T., Kambara H., and Koike Y.
    • Journal Title

      Scientific Reports

      Volume: 7 Pages: 1-11

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Reaching movements in force-fields simulated by a motor control-learning model without desired trajectory2018

    • Author(s)
      Hiroyuki Kambara, Haruka Shimizu, Toshihiro Kawase, Atsushi Takagi, Natsue Yoshimura, Yasuharu Koike
    • Organizer
      Neuroscience Meeting 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ジャグリングに関する脳身体運動イメージング2018

    • Author(s)
      神原裕行, 宮腰誠, 田中宏和, 香川高広, 吉村奈津江, 小池康晴, Scott Makeig
    • Organizer
      モーターコントロール研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Motor learning model adapting to velocity force-field reaching task2017

    • Author(s)
      H. Kambara, H. Shimizu, A. Takagi, T. Kawase, N. Yoshimura, Y. Koike
    • Organizer
      第27回日本神経回路学会全国大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Relationship between muscle synergies and physical performance in patients with hemiparesis2017

    • Author(s)
      Toshihiro Kawase, A. Nishimura, A. Nishimoto, F. Liu, Yeong Dae Kim, Hiroyuki Kambara, Natsue Yoshimura, Yasuharu Koike
    • Organizer
      Neuroscience 2017
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi