• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Reverse engineering of biomolecular motors

Research Project

Project/Area Number 17K15110
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Biophysics
Research InstitutionNational Institute of Information and Communications Technology

Principal Investigator

Furuta Akane  国立研究開発法人情報通信研究機構, 未来ICT研究所フロンティア創造総合研究室, 特別研究員 (10772337)

Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords分子モーター / キネシン / ダイニン / 微小管 / 生物物理学 / ナノマシン
Outline of Final Research Achievements

Biomolecular motors are protein machines that can drive directional movement along cytoskeletal tracks and thus produce mechanical works in the cell. Although previous studies on biomolecular motors have provided information about important features and structures for motility, the design principles for directional movement is still unknown. In this study, we focused on kinesin, one of biomolecular motors that generate directed movement toward the plus end of microtubules. To reveal the directionality determinant of kinesin movement, we took a constructive approach where components that comprise kinesin molecule are randomly permuted and assembled to create a new series of kinesin motors. To our surprise, one of these kinesins showed minus-end directed movement on microtubules, which is opposite to that of the original kinesin. Further analyses of the new minus end-directed kinesin will allow us to unveil the directionality determinants of kinesin motors.

Academic Significance and Societal Importance of the Research Achievements

本研究は,生物分子モーター、キネシンの動作原理を,多数の類似物を創ることによって帰納的に理解するという新しい発想に基づくものである。この手法で、オリジナルのキネシンと同じモジュール構成でありながら、モジュール同士の組み上げ方が異なるだけで、運動方向性が逆転する新しいキネシンを得ることに成功した。分子構造のどのような要素が運動方向性を決めているのかを理解することができれば、自然界から教えられた設計原理をそっくり移植することで,タンパク質に限らず,他の有機材料を用いた新たな分子マシンの開発にもつながると期待できる.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results)

  • [Journal Article] Re-engineering of protein motors to understand mechanisms biasing random motion and generating collective dynamics2018

    • Author(s)
      Furuta Ken’ya、Furuta Akane
    • Journal Title

      Current Opinion in Biotechnology

      Volume: 51 Pages: 39-46

    • DOI

      10.1016/j.copbio.2017.11.009

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 生物分子モーターの再デザイン2018

    • Author(s)
      指宿良太、古田茜、大岩和弘、小嶋寛明、古田健也
    • Organizer
      日本生物物理学会 第65回年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Engineering motor proteins to move along DNA nanotubes2018

    • Author(s)
      Ryota Ibusuki, Akane Furuta, Tatsuya Morishita, Kazuhiro Oiwa, Hiroaki Kojima, Ken'ya Furuta
    • Organizer
      日本生物物理学会 第65回年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] DNA-templated assembly of axonemal outer arm dynein comlexes in vitro2018

    • Author(s)
      Yuka Matsuda, Akane Furuta, Hiroaki Kojima, Kazuhiro Oiwa, Ken'ya Furuta
    • Organizer
      日本生物物理学会 第65回年会
    • Related Report
      2018 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi