Elucidation of molecular mechanisms underlying the greigite-dependent enhancement of methanogenesis.
Project/Area Number |
17K15255
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Applied microbiology
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Igarashi Kensuke 国立研究開発法人産業技術総合研究所, 生命工学領域, 研究員 (90759945)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | メタン菌 / メタン生産 / 硫化鉄 / 生理活性物質 / 網羅的遺伝子発現解析 / 生命の起源 / 生理活性 / 鉄-イオウクラスター / 応用微生物 / トランスクリプトーム |
Outline of Final Research Achievements |
Previous research has shown that greigite (Fe3S4) has bioactivity to enhance methanogenesis. This study aimed to elucidate the underlying mechanism of the enhancement. Culture experiments suggested that specific mineral characteristics of greigite accounted for its bioactivity. Furthermore, soluble chemical species that are released from greigite was found to possess the bioactivity. Transcriptome analysis unveiled that the greigite-dependent enhancement of methanogenesis could be involved in the increase in metabolic fluxes at translational levels. Abiotic experiments showed that greigite has catalytic activity toward CO2 reduction by H2, indicating that greigite could also enhance the metabolic fluxes of methanogenesis by its catalytic activity. Enhanced methanogenesis by greigite was also observed in syntrophic anaerobic microbial communities, suggesting the potential of the greigite-dependent enhancement to applicational technologies.
|
Academic Significance and Societal Importance of the Research Achievements |
グライガイトによるメタン菌の代謝促進は、近年新たに発見された現象であり、その機構が未知である上に、代謝促進が起こる詳細な条件が不明であった。本研究により、その一端が明らかになり、地球の炭素サイクルに深く関わるメタン菌の生理と生態を理解する上で新しい知見を得ることが出来た。また、代謝の促進が現れる培養条件を特定することに成功し、本現象の応用展開、例えば、有機性廃棄物からの効率的なメタン生産技術などに展開できる可能性が示された。
|
Report
(4 results)
Research Products
(10 results)