Radiomics study using image features of dose distribution and intra-treatment CBCT
Project/Area Number |
17K15799
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Medical Physics and Radiological Technology
|
Research Institution | The University of Tokyo |
Principal Investigator |
Nawa Kanabu 東京大学, 医学部附属病院, 助教 (00456914)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | レディオミクス解析 / 画質改善 / 機械学習 / 深層学習 / 医学物理 / Radiomics / 特徴量解析 / 医学物理学 / Radiomics / 放射線 / 情報工学 |
Outline of Final Research Achievements |
We studied the radiomics analysis to establish the new pattern recognition system of accurately predicting the response and prognosis of treatment from image features in medical images such as planning CT, dose distribution, and intra-treatment CBCT. The image quality improvement of medical images is an essential technology for extracting features with high accuracy. As a preprocessing for feature extraction, we constructed a method to improve the image quality of CBCT using deep learning. We investigated the effect of tumor delineation for the values of extracted features. We also examined the dependence on the dose calculation algorithm and the calculation grid size for the features extracted from the dose distribution.
|
Academic Significance and Societal Importance of the Research Achievements |
レディオミクス解析における画質改善の重要性を明らかにし、深層学習を用いた医用画像の画質改善の手法を構築した。また線量分布に対するレディオミクス解析について線量計算のパラメターに対する詳細な検討を行った。
|
Report
(5 results)
Research Products
(42 results)
-
-
[Journal Article] Improvement in Image Quality of CBCT during Treatment by Cycle Generative Adversarial Network2020
Author(s)
今江 禄一, 鍛冶 静雄, 木田 智士, 松田 佳奈子, 竹中 重治, 青木 淳, 仲本 宗泰, 尾崎 翔, 名和 要武, 山下 英臣, 中川 恵一, 阿部 修.
-
Journal Title
Japanese Journal of Radiological Technology
Volume: 76
Issue: 11
Pages: 1173-1184
DOI
NAID
ISSN
0369-4305, 1881-4883
Related Report
Peer Reviewed / Open Access
-
-
-
-
[Journal Article] Salvage stereotactic body radiotherapy for post?operative oligo?recurrence of non?small cell lung cancer: A single?institution analysis of 59?patients2020
Author(s)
Aoki S, Yamashita H, Takahashi W, Nawa K, Ota T, Imae T, Ozaki S, Nozawa Y, Nakajima J, Sato M, Anraku M, Nitadori J, Karasaki T, Abe O, Nakagawa K.
-
Journal Title
Oncology Letters
Volume: 19(4)
Pages: 2695-2704
DOI
Related Report
Peer Reviewed / Open Access
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] 強度変調回転治療中に取得したCBCT画像に対する深層学習を用いた画質改善の試み2020
Author(s)
青木 淳, 今江 禄一, 竹中 重治, 鍛冶 静雄, 木田 智士, 名和 要武, 松田 佳奈子, 竹内 幸浩, 三枝 茂輝, 佐々木 克剛, 一宇 佑太, 中川 恵一, 山下 英臣, 岩永 秀幸, 阿部 修
Organizer
日本放射線腫瘍学会第33回学術大会
Related Report
-
-
-
-
[Presentation] Prediction of malignant glioma grades based on a radiomic analysis2019
Author(s)
T, Nakamoto, W. Takahashi, A. Haga, S. Takahashi, K. Nawa, T. Ohta, S. Ozaki, Y. Nozawa, S. Tanaka, A. Mukasa, K. Nakagawa
Organizer
先端医療シーズ開発フォーラム2019
Related Report
-
-
[Presentation] Radiomics-Based Prediction of Malignant Glioma Grades Using T2-Weighted Magnetic Resonance Images2018
Author(s)
T. Nakamoto, W. Takahashi, A. Haga, S. Takahashi, K. Nawa, T. Ohta, S. Ozaki, S. Tanaka, A. Mukasa, K. Nakagawa
Organizer
60th Annual Meeting and Exhibition, AAPM 2018
Related Report
Int'l Joint Research
-
-
[Presentation] Field-Of-View Expansion of Megavoltage CT Based On Iterative Reconstruction Algorithm Using Information of Treatment Planning KV-CT2018
Author(s)
Y. Watanabe, T. Magome, A. Haga, K. Nawa, M. Nakano, Y. Nomura, S. Hanaoka, K. Nakagawa, D. Zuro, C. Han, J. Wong, S. Hui
Organizer
60th Annual Meeting and Exhibition, AAPM 2018
Related Report
Int'l Joint Research
-
-
-
-
-
-
-
-
[Presentation] Dose Reconstruction for Prostate SBRT by Use of Cone-Beam CT and a Log File During FFF-VMAT Delivery2017
Author(s)
T. Imae, A. Haga, Y. Watanabe, S. Takenaka, K. Nawa, W. Takahashi, H. Yamashita, Y. Takeuchi, K. Yano, K. Nakagawa, O. Abe
Organizer
AAPM 2017 59th Annual Meeting and Exhibition
Related Report
Int'l Joint Research
-
-
-
-
-
-